Interaction of long-term nitrogen fertilizer application, crop rotation, and tillage system on soil carbon and nitrogen dynamics

被引:56
|
作者
Congreves, K. A. [1 ]
Hooker, D. C. [2 ]
Hayes, A. [3 ]
Verhallen, E. A. [3 ]
Van Eerd, L. L. [1 ]
机构
[1] Univ Guelph, Sch Environm Sci, Ridgetown Campus, Ridgetown, ON N0P 2C0, Canada
[2] Univ Guelph, Dept Plant Agr, Ridgetown Campus, Ridgetown, ON N0P 2C0, Canada
[3] Ontario Minist Agr Food & Rural Affairs, Ridgetown, ON N0P 2C0, Canada
关键词
Continuous corn Zea mays; Synthetic nitrogen fertilizer; Moldboard plow/plough conventional tillage; No-till; Soil organic matter; Winter wheat Triticum aestivum; ORGANIC-CARBON; USE EFFICIENCY; SEQUESTRATION; MANAGEMENT; RESIDUE; IMPACT; MATTER; WHEAT; TURNOVER; DECOMPOSITION;
D O I
10.1007/s11104-016-2986-y
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Tillage system and crop rotation influences soil organic carbon (SOC) and total N (TN), but there remains considerable uncertainty in the response of C and N dynamics to fertilizer N inputs. A long-term (11-yr) experiment on a clay loam Orthic Humic Gleysol at Ridgetown, Ontario, Canada was used to evaluate the impact of fertilizer N applications (in-season zero N (-N) compared to (+N) 100 and 80 kg N ha(-1) yr.(-1) to corn (Zea mays L.) and wheat (Triticum aestivum L.), respectively) on soil attributes. The cropping systems consisted of continuous corn (CC), corn-soybean (Glycine max L.) (C-S) and corn-soybean-wheat (C-S-W) rotations using conventional moldboard plough and no-till systems. Soil was collected from the 0-120 cm profile in 5, 10, and 20 cm increments and analyzed for SOC and TN. The effect and interaction of N fertilization on soil attributes was highly dependent on crop rotation and tillage system. The gain in SOC and TN contents due to +N fertilizer was greatest (up to 31 and 57 % relative to the -N control, respectively) in the 0-20 cm depth with the C-S-W rotation, and lowest under CC, which showed no N fertilizer effect. However, differences in SOC and TN were not confined to the surface 20 cm, as N fertilizer treatments significantly influenced the contents at 20-60 and 60-120 cm in certain rotation and tillage systems; C-S-W was the most responsive to N fertilizer-induced SOC and TN gains. Using regression analysis, we found that higher SOC contents corresponded to lower variability in the 5-yr. mean corn yield, which suggests that the inclusion of winter wheat in a C-S rotation may have important implications for sustainable and resilient agroecosystems in humid, temperate climates.
引用
收藏
页码:113 / 127
页数:15
相关论文
共 50 条
  • [1] Interaction of long-term nitrogen fertilizer application, crop rotation, and tillage system on soil carbon and nitrogen dynamics
    K. A. Congreves
    D. C. Hooker
    A. Hayes
    E. A. Verhallen
    L. L. Van Eerd
    Plant and Soil, 2017, 410 : 113 - 127
  • [2] Long-term tillage and crop rotation effects on soil carbon and nitrogen stocks in southwestern Ontario
    Chahal, Inderjot
    Peng, Yajun
    Hooker, David C.
    Van Eerd, Laura L.
    CANADIAN JOURNAL OF SOIL SCIENCE, 2025, 105
  • [3] Long-term tillage and crop rotation effects on soil quality, organic carbon, and total nitrogen
    Van Eerd, Laura L.
    Congreves, Katelyn A.
    Hayes, Adam
    Verhallen, Anne
    Hooker, David C.
    CANADIAN JOURNAL OF SOIL SCIENCE, 2014, 94 (03) : 303 - 315
  • [4] Contribution of crop residue, soil, and fertilizer nitrogen to nitrous oxide emissions varies with long-term crop rotation and tillage
    Machado, Pedro Vitor Ferrari
    Farrell, Richard E.
    Deen, William
    Voroney, R. Paul
    Congreves, Katelyn A.
    Wagner-Riddle, Claudia
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 767 (767)
  • [5] Long-term effects of crop rotation, tillage, and fertilizer nitrogen on soil health indicators and crop productivity in a temperate climate
    Chahal, I
    Hooker, D. C.
    Deen, B.
    Janovicek, K.
    Van Eerd, L. L.
    SOIL & TILLAGE RESEARCH, 2021, 213
  • [6] Carbon and Nitrogen Content of Soil Organic Matter and Microbial Biomass under Long-Term Crop Rotation and Tillage in Illinois, USA
    Zuber, Stacy M.
    Behnke, Gevan D.
    Nafziger, Emerson D.
    Villamil, Maria B.
    AGRICULTURE-BASEL, 2018, 8 (03):
  • [7] Long-Term Tillage and Residue Management Influences Soil Carbon and Nitrogen Dynamics
    Halpern, Moshe T.
    Whalen, Joann K.
    Madramootoo, Chandra A.
    SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 2010, 74 (04) : 1211 - 1217
  • [8] The Impact of Long-Term Tillage Systems on Soil Carbon and Nitrogen Dynamics and Other Nutrient Contents
    Ozturk, Feyzullah
    Ortas, Ibrahim
    INTERNATIONAL JOURNAL OF AGRONOMY, 2024, 2024
  • [9] Long-term rotation diversity and nitrogen effects on soil organic carbon and nitrogen stocks
    Schmer, Marty R.
    Jin, Virginia L.
    Wienhold, Brian J.
    Becker, Sophia M.
    Varvel, Gary E.
    AGROSYSTEMS GEOSCIENCES & ENVIRONMENT, 2020, 3 (01)
  • [10] Soil organic carbon dynamics in a dryland cereal cropping system of the Loess Plateau under long-term nitrogen fertilizer applications
    Guo, Shengli
    Wu, Jinshui
    Coleman, Kevin
    Zhu, Hanhua
    Li, Yong
    Liu, Wenzhao
    PLANT AND SOIL, 2012, 353 (1-2) : 321 - 332