OUTLIER-AWARE DICTIONARY LEARNING FOR SPARSE REPRESENTATION

被引:0
|
作者
Amini, Sajjad [1 ]
Sadeghi, Mostafa [1 ]
Joneidi, Mohsen [1 ]
Babaie-Zadeh, Massoud [1 ]
Jutten, Christian [2 ,3 ]
机构
[1] Sharif Univ Technol, Dept Elect Engn, Tehran, Iran
[2] GIPSA Lab, Grenoble, France
[3] Inst Univ France, Limoges, France
来源
2014 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP) | 2014年
基金
美国国家科学基金会;
关键词
Sparse representation; dictionary learning; robustness; outlier data;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Dictionary learning (DL) for sparse representation has been widely investigated during the last decade. A DL algorithm uses a training data set to learn a set of basis functions over which all training signals can be sparsely represented. In practice, training signals may contain a few outlier data, whose structures differ from those of the clean training set. The presence of these unpleasant data may heavily affect the learning performance of a DL algorithm. In this paper we propose a robust-to-outlier formulation of the DL problem. We then present an algorithm for solving the resulting problem. Experimental results on both synthetic data and image denoising demonstrate the promising robustness of our proposed problem.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Aiding Dictionary Learning Through Multi-Parametric Sparse Representation
    Stoican, Florin
    Irofti, Paul
    ALGORITHMS, 2019, 12 (07)
  • [42] Locality-sensitive dictionary learning for sparse representation based classification
    Wei, Chia-Po
    Chao, Yu-Wei
    Yeh, Yi-Ren
    Wang, Yu-Chiang Frank
    PATTERN RECOGNITION, 2013, 46 (05) : 1277 - 1287
  • [43] Block Matching Video Compression Based on Sparse Representation and Dictionary Learning
    Maziar Irannejad
    Homayoun Mahdavi-Nasab
    Circuits, Systems, and Signal Processing, 2018, 37 : 3537 - 3557
  • [44] Dictionary Learning with Incoherence and Sparsity Constraints for Sparse Representation of Nonnegative Signals
    Tang, Zunyi
    Ding, Shuxue
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2013, E96D (05): : 1192 - 1203
  • [45] Contour tracking in echocardiographic sequences via sparse representation and dictionary learning
    Huang, Xiaojie
    Dione, Donald P.
    Compas, Colin B.
    Papademetris, Xenophon
    Lin, Ben A.
    Bregasi, Alda
    Sinusas, Albert J.
    Staib, Lawrence H.
    Duncan, James S.
    MEDICAL IMAGE ANALYSIS, 2014, 18 (02) : 253 - 271
  • [46] Block Matching Video Compression Based on Sparse Representation and Dictionary Learning
    Irannejad, Maziar
    Mahdavi-Nasab, Homayoun
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2018, 37 (08) : 3537 - 3557
  • [47] Discriminative Object Tracking via Sparse Representation and Online Dictionary Learning
    Xie, Yuan
    Zhang, Wensheng
    Li, Cuihua
    Lin, Shuyang
    Qu, Yanyun
    Zhang, Yinghua
    IEEE TRANSACTIONS ON CYBERNETICS, 2014, 44 (04) : 539 - 553
  • [48] Distributed Dictionary Learning for Sparse Representation in Sensor Networks
    Liang, Junli
    Zhang, Miaohua
    Zeng, Xianyu
    Yu, Guoyang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (06) : 2528 - 2541
  • [49] LEARNING DICTIONARY VIA SUBSPACE SEGMENTATION FOR SPARSE REPRESENTATION
    Feng, Jianzhou
    Song, Li
    Yang, Xiaokang
    Zhang, Wenjun
    2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011, : 1245 - 1248
  • [50] Deformable segmentation via sparse representation and dictionary learning
    Zhang, Shaoting
    Zhan, Yiqiang
    Metaxas, Dimitris N.
    MEDICAL IMAGE ANALYSIS, 2012, 16 (07) : 1385 - 1396