OUTLIER-AWARE DICTIONARY LEARNING FOR SPARSE REPRESENTATION

被引:0
|
作者
Amini, Sajjad [1 ]
Sadeghi, Mostafa [1 ]
Joneidi, Mohsen [1 ]
Babaie-Zadeh, Massoud [1 ]
Jutten, Christian [2 ,3 ]
机构
[1] Sharif Univ Technol, Dept Elect Engn, Tehran, Iran
[2] GIPSA Lab, Grenoble, France
[3] Inst Univ France, Limoges, France
来源
2014 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP) | 2014年
基金
美国国家科学基金会;
关键词
Sparse representation; dictionary learning; robustness; outlier data;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Dictionary learning (DL) for sparse representation has been widely investigated during the last decade. A DL algorithm uses a training data set to learn a set of basis functions over which all training signals can be sparsely represented. In practice, training signals may contain a few outlier data, whose structures differ from those of the clean training set. The presence of these unpleasant data may heavily affect the learning performance of a DL algorithm. In this paper we propose a robust-to-outlier formulation of the DL problem. We then present an algorithm for solving the resulting problem. Experimental results on both synthetic data and image denoising demonstrate the promising robustness of our proposed problem.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Secure Dictionary Learning for Sparse Representation
    Nakachi, Takayuki
    Bandoh, Yukihiro
    Kiya, Hitoshi
    2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,
  • [2] Secure Overcomplete Dictionary Learning for Sparse Representation
    Nakachi, Takayuki
    Bandoh, Yukihiro
    Kiya, Hitoshi
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2020, E103D (01) : 50 - 58
  • [3] Dictionary Learning for Sparse Representation: A Novel Approach
    Sadeghi, Mostafa
    Babaie-Zadeh, Massoud
    Jutten, Christian
    IEEE SIGNAL PROCESSING LETTERS, 2013, 20 (12) : 1195 - 1198
  • [4] Learning Oriented Dictionary for Sparse Image Representation
    Liang, Ruihua
    Cheng, Lizhi
    Chen, Chen
    2011 INTERNATIONAL CONFERENCE ON ELECTRONICS, COMMUNICATIONS AND CONTROL (ICECC), 2011, : 1529 - 1532
  • [5] DICTIONARY LEARNING FOR SPARSE REPRESENTATION: COMPLEXITY AND ALGORITHMS
    Razaviyayn, Meisam
    Tseng, Hung-Wei
    Luo, Zhi-Quan
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [6] Accelerated Dictionary Learning for Sparse Signal Representation
    Ghayem, Fateme
    Sadeghi, Mostafa
    Babaie-Zadeh, Massoud
    Jutten, Christian
    LATENT VARIABLE ANALYSIS AND SIGNAL SEPARATION (LVA/ICA 2017), 2017, 10169 : 531 - 541
  • [7] Laplacian sparse dictionary learning for image classification based on sparse representation
    Fang Li
    Jia Sheng
    San-yuan Zhang
    Frontiers of Information Technology & Electronic Engineering, 2017, 18 : 1795 - 1805
  • [8] Laplacian sparse dictionary learning for image classification based on sparse representation
    Li, Fang
    Sheng, Jia
    Zhang, San-yuan
    FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2017, 18 (11) : 1795 - 1805
  • [9] Greedy double sparse dictionary learning for sparse representation of speech signals
    Abrol, V.
    Sharma, P.
    Sao, A. K.
    SPEECH COMMUNICATION, 2016, 85 : 71 - 82
  • [10] Performance analysis on dictionary learning and sparse representation algorithms
    Ng, Suit Mun
    Yazid, Haniza
    Mustafa, Nazahah
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (12) : 16455 - 16476