Robust semiglobally practical stabilization for nonlinear singularly perturbed systems

被引:5
作者
Meng, Bo [1 ]
Jing, Yuan-Wei [1 ]
机构
[1] Northeastern Univ, Shenyang 110004, Liaoning, Peoples R China
关键词
Singularly perturbed; Semiglobal stabilization; Semiglobally practical stabilization; Slow subsystem; Boundary layer; STABILITY;
D O I
10.1016/j.na.2008.03.056
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, the problem of semiglobally practical stabilization is considered for nonlinear singularly perturbed systems with unknown parameters. The composite Lyapunov function for the full systems is established by both that of the slow subsystem and the boundary layer system. A state feedback control law for the linear part of the slow subsystem and boundary layer system is proposed which renders the whole closed-loop system semiglobally stable. The upper bound expression of epsilon is given to obtain the condition of asymptotic stability for the system. A simulation example is given to demonstrate the effectiveness and feasibility of the controller. (c) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2691 / 2699
页数:9
相关论文
共 50 条
  • [31] A robust adaptive grid method for a nonlinear singularly perturbed differential equation with integral boundary condition
    Liu, Li-Bin
    Long, Guangqing
    Cen, Zhongdi
    NUMERICAL ALGORITHMS, 2020, 83 (02) : 719 - 739
  • [32] On parametric instability of singularly perturbed systems
    A. A. Martynyuk
    A. S. Khoroshun
    Automation and Remote Control, 2013, 74 : 46 - 61
  • [33] Robust Output Regulation of Singularly Perturbed Systems by Event-Triggered Output Feedback
    Lei, Yan
    Hua, Tong
    Wang, Yan-Wu
    Park, Ju H.
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2024, 54 (04): : 2104 - 2113
  • [34] A robust adaptive grid method for a nonlinear singularly perturbed differential equation with integral boundary condition
    Li-Bin Liu
    Guangqing Long
    Zhongdi Cen
    Numerical Algorithms, 2020, 83 : 719 - 739
  • [35] Computer robust control of discrete-time decentralized stochastic singularly perturbed systems
    Yao, Kaichao
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2008, 4 (07): : 1771 - 1782
  • [36] State Feedback Controller Design for a Kind of Nonlinear Singularly Perturbed System
    Meng Bo
    Jing Yuanwei
    Chao Shen
    2008 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-11, 2008, : 5100 - 5104
  • [37] Nonlinear Model Predictive Control for Regulation of a Class of Nonlinear Singularly Perturbed Discrete-time Systems
    Zhang, Yan
    Naidu, D. Subbaram
    Cai, Chenxiao
    Zou, Yun
    2014 7TH INTERNATIONAL SYMPOSIUM ON RESILIENT CONTROL SYSTEMS (ISRCS), 2014,
  • [38] PRACTICAL STABILIZATION OF A CLASS OF UNCERTAIN NONLINEAR-SYSTEMS
    MYSZKOROWSKI, P
    SYSTEMS & CONTROL LETTERS, 1992, 18 (03) : 233 - 236
  • [39] Practical Stabilization of Passive Nonlinear Systems with Limited Control
    Jayawardhana, B.
    Almuzakki, M. Z.
    Tanwani, A.
    IFAC PAPERSONLINE, 2019, 52 (16): : 460 - 465
  • [40] Finite-Time Fuzzy Control for Nonlinear Singularly Perturbed Systems With Input Constraints
    Li, Feng
    Zheng, Wei Xing
    Xu, Shengyuan
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2022, 30 (06) : 2129 - 2134