We study the nonlinear Klein-Gordon equation on a product space M = R x X with metric g = dt2 -g where g is the scattering metric on X. We establish the global-intime Strichartz estimate for Klein-Gordon equationwithout loss of derivative by using the microlocalized spectral measure of Laplacian on scattering manifold showed in Hassell and Zhang (Anal PDE 9: 151-192, 2016) and a Littlewood-Paley squarefunction estimate proved in Zhang (Adv Math 271: 91-111, 2015). We prove the global existence and scattering for a family of nonlinear Klein-Gordon equations for small initial data with minimum regularity on this setting.
机构:
Univ Autonoma Metropolitana Iztapalapa, Dept Matemat, Apartado 55-534, Ciudad De Mexico, MexicoUniv Autonoma Metropolitana Iztapalapa, Dept Matemat, Apartado 55-534, Ciudad De Mexico, Mexico
Bengochea, G.
Verde-Star, L.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Autonoma Metropolitana Iztapalapa, Dept Matemat, Apartado 55-534, Ciudad De Mexico, MexicoUniv Autonoma Metropolitana Iztapalapa, Dept Matemat, Apartado 55-534, Ciudad De Mexico, Mexico
Verde-Star, L.
Ortigueira, M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Elect Engn, CTS UNINOVA, Campus FCT UNL, P-2825149 Quinta Da Torre, Monte Da Capari, PortugalUniv Autonoma Metropolitana Iztapalapa, Dept Matemat, Apartado 55-534, Ciudad De Mexico, Mexico