Updating method for the computation of orbits in parallel and sequential dynamical systems

被引:18
作者
Aledo, Juan A. [1 ]
Martinez, S. [1 ]
Valverde, Jose C. [1 ]
机构
[1] Univ Castilla La Mancha, Dept Math, Albacete, Spain
关键词
discrete dynamical systems; parallel dynamical systems; sequential dynamical systems; computation of orbits; dependency graphs; Boolean functions; SIMULATION;
D O I
10.1080/00207160.2013.767894
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we provide a matrix method in order to compute orbits of parallel and sequential dynamical systems on Boolean functions. In this sense, we develop algorithms for systems defined over directed (and undirected) graphs when the evolution operator is a general minterm or maxterm and, likewise, when it is constituted by independent local Boolean functions, so providing a new tool for the study of orbits of these dynamical systems.
引用
收藏
页码:1796 / 1808
页数:13
相关论文
共 14 条
[1]   Parallel discrete dynamical systems on maxterm and minterm Boolean functions [J].
Aledo, J. A. ;
Martinez, S. ;
Pelayo, F. L. ;
Valverde, Jose C. .
MATHEMATICAL AND COMPUTER MODELLING, 2012, 55 (3-4) :666-671
[2]   Parallel dynamical systems over directed dependency graphs [J].
Aledo, Juan A. ;
Martinez, S. ;
Valverde, Jose C. .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (03) :1114-1119
[3]   Parallel discrete dynamical systems on independent local functions [J].
Aledo, Juan A. ;
Martinez, S. ;
Valverde, Jose C. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 237 (01) :335-339
[4]  
[Anonymous], 2004, ELEMENTS APPL BIFURC
[5]  
Barrett C.L., 2002, APPL MATH COMPUT, V122, P325
[6]   Discrete dynamical systems on graphs and Boolean functions [J].
Barrett, CL ;
Chen, WYC ;
Zheng, MJ .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2004, 66 (06) :487-497
[7]   Elements of a theory of simulation - II: sequential dynamical systems [J].
Barrett, CL ;
Mortveit, HS ;
Reidys, CM .
APPLIED MATHEMATICS AND COMPUTATION, 2000, 107 (2-3) :121-136
[8]   Elements of a theory of computer simulation - I: Sequential CA over random graphs [J].
Barrett, CL ;
Reidys, CM .
APPLIED MATHEMATICS AND COMPUTATION, 1999, 98 (2-3) :241-259
[9]  
Bender E. A., 2005, A short course in discrete mathematics
[10]  
Colon-Reyes O., 2004, ANN COMB, V8, P425, DOI DOI 10.1007/S00026-004-0230-6