A Peptidomimetic Antibiotic Interacts with the Periplasmic Domain of LptD from Pseudomonas aeruginosa

被引:66
作者
Andolina, Gloria [1 ,5 ]
Bencze, Laszlo-Csaba [1 ,6 ]
Zerbe, Katja [1 ]
Mueller, Maik [2 ]
Steinmann, Jessica [1 ]
Kocherla, Harsha [1 ]
Mondal, Milon [1 ]
Sobek, Jens [4 ]
Moehle, Kerstin [1 ]
Malojcic, Goran [3 ,7 ]
Wollscheid, Bernd [2 ]
Robinson, John A. [1 ]
机构
[1] Univ Zurich, Chem Dept, Winterthurerstr 190, CH-8057 Zurich, Switzerland
[2] ETH, Dept Hlth Sci & Technol, Inst Mol Syst Biol, Auguste Piccard Hof 1, CH-8093 Zurich, Switzerland
[3] Harvard Univ, Dept Chem & Chem Biol, 12 Oxford St, Cambridge, MA 02138 USA
[4] Funct Genom Ctr Zurich, Winterthurerstr 190, CH-8057 Zurich, Switzerland
[5] Univ Hong Kong, Dept Chem, Pokfulam Rd, Hong Kong, Hong Kong, Peoples R China
[6] Babes Bolyai Univ, Dept Chem, Cluj Napoca 400084, Romania
[7] Goldfinch Bio, 215 First St,Fourth Floor, Cambridge, MA 02142 USA
基金
瑞士国家科学基金会;
关键词
OUTER-MEMBRANE; LIPOPOLYSACCHARIDE TRANSPORT; ESCHERICHIA-COLI; STRUCTURAL BASIS; MIMETICS; COMPLEX; LPS;
D O I
10.1021/acschembio.7b00822
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The outer membrane (OM) in Gram-negative bacteria is an asymmetric bilayer with mostly lipopolysaccharide (LPS) molecules in the outer leaflet. During OM biogenesis, new LPS molecules are transported from their site of assembly on the inner membrane to the OM by seven LPS transport proteins (LptA-G). The complex formed between the integral beta-barrel OM protein LptD and the lipoprotein LptE is responsible for transporting LPS from the periplasmic side of the OM to its final location on the cell surface. Because of its essential function in many Gram-negative bacteria, the LPS transport pathway is an interesting target for the development of new antibiotics. A family of macrocyclic peptidomimetics was discovered recently that target LptD and inhibit LPS transport specifically in Pseudomonas spp. The related molecule Murepavadin is in clinical development for the treatment of life-threatening infections caused by P. aeruginosa. To characterize the interaction of these antibiotics with LptD from P. aeruginosa, we characterized the binding site by cross-linking to a photolabeling probe. We used a hypothesis-free mass spectrometry-based proteomic approach to provide evidence that the antibiotic cross-links to the periplasmic segment of LptD, containing a beta-jellyroll domain and an N-terminal insert domain characteristic of Pseudomonas spp. Binding of the antibiotic to the periplasmic segment is expected to block LPS transport, consistent with the proposed mode of action and observed specificity of these antibiotics. These insights may prove valuable for the discovery of new antibiotics targeting the LPS transport pathway in other Gram-negative bacteria.
引用
收藏
页码:666 / 675
页数:10
相关论文
共 34 条
  • [1] Immunoglobulin domains in Escherichia coli and other enterobacteria: from pathogenesis to applications in antibody technologies
    Bodelon, Gustavo
    Palomino, Carmen
    Angel Fernandez, Luis
    [J]. FEMS MICROBIOLOGY REVIEWS, 2013, 37 (02) : 204 - 250
  • [2] Structural and Functional Characterization of the LPS Transporter LptDE from Gram-Negative Pathogens
    Botos, Istvan
    Majdalani, Nadim
    Mayclin, Stephen J.
    McCarthy, Jennifer Gehret
    Lundquist, Karl
    Wojtowicz, Damian
    Barnard, Travis J.
    Gumbart, James C.
    Buchanan, Susan K.
    [J]. STRUCTURE, 2016, 24 (06) : 965 - 976
  • [3] Disulfide Rearrangement Triggered by Translocon Assembly Controls Lipopolysaccharide Export
    Chng, Shu-Sin
    Xue, Mingyu
    Garner, Ronald A.
    Kadokura, Hiroshi
    Boyd, Dana
    Beckwith, Jonathan
    Kahne, Daniel
    [J]. SCIENCE, 2012, 337 (6102) : 1665 - 1668
  • [4] Characterization of the two-protein complex in Escherichia coli responsible for lipopolysaccharide assembly at the outer membrane
    Chng, Shu-Sin
    Ruiz, Natividad
    Chimalakonda, Gitanjali
    Silhavy, Thomas J.
    Kahne, Daniel
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (12) : 5363 - 5368
  • [5] Structural basis for outer membrane lipopolysaccharide insertion
    Dong, Haohao
    Xiang, Quanju
    Gu, Yinghong
    Wang, Zhongshan
    Paterson, Neil G.
    Stansfeld, Phillip J.
    He, Chuan
    Zhang, Yizheng
    Wang, Wenjian
    Dong, Changjiang
    [J]. NATURE, 2014, 511 (7507) : 52 - U569
  • [6] Regulated Assembly of the Transenvelope Protein Complex Required for Lipopolysaccharide Export
    Freinkman, Elizaveta
    Okuda, Suguru
    Ruiz, Natividad
    Kahne, Daniel
    [J]. BIOCHEMISTRY, 2012, 51 (24) : 4800 - 4806
  • [7] Micelles, Bicelles, and Nanodiscs: Comparing the Impact of Membrane Mimetics on Membrane Protein Backbone Dynamics
    Frey, Lukas
    Lakomek, Nils-Alexander
    Riek, Roland
    Bibow, Stefan
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (01) : 380 - 383
  • [8] Lipopolysaccharide is Inserted into the Outer Membrane through An Intramembrane Hole, A Lumen Gate, and the Lateral Opening of LptD
    Gu, Yinghong
    Stansfeld, Phillip J.
    Zeng, Yi
    Dong, Haohao
    Wang, Wenjian
    Dong, Changjiang
    [J]. STRUCTURE, 2015, 23 (03) : 496 - 504
  • [9] The Power of Asymmetry: Architecture and Assembly of the Gram-Negative Outer Membrane Lipid Bilayer
    Henderson, Jeremy C.
    Zimmerman, Shawn M.
    Crofts, Alexander A.
    Boll, Joseph M.
    Kuhns, Lisa G.
    Herrera, Carmen M.
    Trent, M. Stephen
    [J]. ANNUAL REVIEW OF MICROBIOLOGY, VOL 70, 2016, 70 : 255 - 278
  • [10] Outer membrane lipoprotein biogenesis: Lol is not the end
    Konovalova, Anna
    Silhavy, Thomas J.
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2015, 370 (1679)