Multi-vortex crystal lattices in Bose-Einstein condensates with a rotating trap

被引:4
|
作者
Xie, Shuangquan [1 ]
Kevrekidis, Panayotis G. [2 ]
Kolokolnikov, Theodore [1 ]
机构
[1] Dalhousie Univ, Dept Math & Stat, Halifax, NS, Canada
[2] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2018年 / 474卷 / 2213期
基金
加拿大自然科学与工程研究理事会;
关键词
Bose-Einstein condensates; vortex dynamics; vortex crystals; GROSS-PITAEVSKII EQUATION; VORTEX FORMATION; LANDAU MODEL; VORTICES; DYNAMICS; EQUILIBRIA; DERIVATION; STABILITY; MOTION;
D O I
10.1098/rspa.2017.0553
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider vortex dynamics in the context of Bose-Einstein condensates (BECs) with a rotating trap, with or without anisotropy. Starting with the Gross-Pitaevskii (GP) partial differential equation (PDE), we derive a novel reduced system of ordinary differential equations (ODEs) that describes stable configurations of multiple co-rotating vortices (vortex crystals). This description is found to be quite accurate quantitatively especially in the case of multiple vortices. In the limit of many vortices, BECs are known to form vortex crystal structures, whereby vortices tend to arrange themselves in a hexagonal-like spatial configuration. Using our asymptotic reduction, we derive the effective vortex crystal density and its radius. We also obtain an asymptotic estimate for the maximum number of vortices as a function of rotation rate. We extend considerations to the anisotropic trap case, confirming that a pair of vortices lying on the long (short) axis is linearly stable (unstable), corroborating the ODE reduction results with full PDE simulations. We then further investigate the many-vortex limit in the case of strong anisotropic potential. In this limit, the vortices tend to align themselves along the long axis, and we compute the effective one-dimensional vortex density, as well as the maximum admissible number of vortices. Detailed numerical simulations of the GP equation are used to confirm our analytical predictions.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Rotating Two-Component Bose-Einstein Condensates
    Liu, Zuhan
    ACTA APPLICANDAE MATHEMATICAE, 2010, 110 (01) : 367 - 398
  • [42] Vortex patterns in rotating dipolar Bose-Einstein condensate mixtures with squared optical lattices
    Kumar, Ramavarmaraja Kishor
    Tomio, Lauro
    Gammal, Arnaldo
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2019, 52 (02)
  • [43] Vortex matter in atomic Bose-Einstein condensates
    Sols, F
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2002, 369 (1-4): : 125 - 134
  • [44] Azimuthal vortex clusters in Bose-Einstein condensates
    Lashkin, Volodymyr M.
    Desyatnikov, Anton S.
    Ostrovskaya, Elena A.
    Kivshar, Yuri S.
    PHYSICAL REVIEW A, 2012, 85 (01):
  • [45] Vortex patterns and the critical rotational frequency in rotating dipolar Bose-Einstein condensates
    Cai, Yongyong
    Yuan, Yongjun
    Rosenkranz, Matthias
    Pu, Han
    Bao, Weizhu
    PHYSICAL REVIEW A, 2018, 98 (02)
  • [46] Formation and structure of vortex lattices in a rotating double-well Bose-Einstein condensate
    Wen, L. H.
    Luo, X. B.
    LASER PHYSICS LETTERS, 2012, 9 (08) : 618 - 624
  • [47] Vortex chain structure in Bose-Einstein condensates
    Isoshima, Tomoya
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2008, 77 (09)
  • [48] Controlled vortex states in Bose-Einstein condensates
    Ramljak, Tonci
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2021, 54 (12)
  • [49] Vortex pump for Bose-Einstein condensates utilizing a time-averaged orbiting potential trap
    Kuopanportti, Pekko
    Anderson, Brian P.
    Mottonen, Mikko
    PHYSICAL REVIEW A, 2013, 87 (03):
  • [50] Chaotic few-body vortex dynamics in rotating Bose-Einstein condensates
    Zhang, Tiantian
    Schloss, James
    Thomasen, Andreas
    O'Riordan, Lee James
    Busch, Thomas
    White, Angela
    PHYSICAL REVIEW FLUIDS, 2019, 4 (05)