Multi-vortex crystal lattices in Bose-Einstein condensates with a rotating trap

被引:4
|
作者
Xie, Shuangquan [1 ]
Kevrekidis, Panayotis G. [2 ]
Kolokolnikov, Theodore [1 ]
机构
[1] Dalhousie Univ, Dept Math & Stat, Halifax, NS, Canada
[2] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2018年 / 474卷 / 2213期
基金
加拿大自然科学与工程研究理事会;
关键词
Bose-Einstein condensates; vortex dynamics; vortex crystals; GROSS-PITAEVSKII EQUATION; VORTEX FORMATION; LANDAU MODEL; VORTICES; DYNAMICS; EQUILIBRIA; DERIVATION; STABILITY; MOTION;
D O I
10.1098/rspa.2017.0553
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider vortex dynamics in the context of Bose-Einstein condensates (BECs) with a rotating trap, with or without anisotropy. Starting with the Gross-Pitaevskii (GP) partial differential equation (PDE), we derive a novel reduced system of ordinary differential equations (ODEs) that describes stable configurations of multiple co-rotating vortices (vortex crystals). This description is found to be quite accurate quantitatively especially in the case of multiple vortices. In the limit of many vortices, BECs are known to form vortex crystal structures, whereby vortices tend to arrange themselves in a hexagonal-like spatial configuration. Using our asymptotic reduction, we derive the effective vortex crystal density and its radius. We also obtain an asymptotic estimate for the maximum number of vortices as a function of rotation rate. We extend considerations to the anisotropic trap case, confirming that a pair of vortices lying on the long (short) axis is linearly stable (unstable), corroborating the ODE reduction results with full PDE simulations. We then further investigate the many-vortex limit in the case of strong anisotropic potential. In this limit, the vortices tend to align themselves along the long axis, and we compute the effective one-dimensional vortex density, as well as the maximum admissible number of vortices. Detailed numerical simulations of the GP equation are used to confirm our analytical predictions.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Rotating trapped Bose-Einstein condensates
    Fetter, Alexander L.
    REVIEWS OF MODERN PHYSICS, 2009, 81 (02) : 647 - 691
  • [32] Manipulating vortices with a rotating laser beam in Bose-Einstein condensates
    Di, Xuefeng
    Nie, Yu-Hang
    Yang, Tao
    LASER PHYSICS, 2023, 33 (08)
  • [33] Finite-temperature vortex dynamics in Bose-Einstein condensates
    Jackson, B.
    Proukakis, N. P.
    Barenghi, C. F.
    Zaremba, E.
    PHYSICAL REVIEW A, 2009, 79 (05)
  • [34] Vortex-bright soliton complexes in F=2 rotating Bose-Einstein condensates
    Zhu, Hao
    Wang, Deng-Shan
    Yu, Hao
    Cao, Huan-Qi
    Liu, Wu-Ming
    Yin, Shou-Gen
    ANNALS OF PHYSICS, 2022, 437
  • [35] A numerical study of vortex nucleation in 2D rotating Bose-Einstein condensates
    Dujardin, Guillaume
    Lacroix-Violet, Ingrid
    Nahas, Anthony
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2025, 229 : 409 - 434
  • [36] Discrete vortex solitons in dipolar Bose-Einstein condensates
    Gligoric, G.
    Maluckov, A.
    Stepic, M.
    Hadzievski, L. J.
    Malomed, B. A.
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2010, 43 (05)
  • [37] Vortex lattices in binary Bose-Einstein condensates with dipole-dipole interactions
    Kumar, Ramavarmaraja Kishor
    Tomio, Lauro
    Malomed, Boris A.
    Gammal, Arnaldo
    PHYSICAL REVIEW A, 2017, 96 (06)
  • [38] A two-parameter continuation algorithm for vortex pinning in rotating Bose-Einstein condensates
    Jeng, B. -W.
    Wang, Y. -S.
    Chien, C. -S.
    COMPUTER PHYSICS COMMUNICATIONS, 2013, 184 (03) : 493 - 508
  • [39] VORTEX INTERACTION DYNAMICS IN TRAPPED BOSE-EINSTEIN CONDENSATES
    Torres, Pedro J.
    Carretero-Gonzalez, R.
    Middelkamp, S.
    Schmelcher, P.
    Frantzeskakis, D. J.
    Kevrekidis, P. G.
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2011, 10 (06) : 1589 - 1615
  • [40] Stability and instability properties of rotating Bose-Einstein condensates
    Arbunich, Jack
    Nenciu, Irina
    Sparber, Christof
    LETTERS IN MATHEMATICAL PHYSICS, 2019, 109 (06) : 1415 - 1432