Multi-vortex crystal lattices in Bose-Einstein condensates with a rotating trap

被引:4
|
作者
Xie, Shuangquan [1 ]
Kevrekidis, Panayotis G. [2 ]
Kolokolnikov, Theodore [1 ]
机构
[1] Dalhousie Univ, Dept Math & Stat, Halifax, NS, Canada
[2] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2018年 / 474卷 / 2213期
基金
加拿大自然科学与工程研究理事会;
关键词
Bose-Einstein condensates; vortex dynamics; vortex crystals; GROSS-PITAEVSKII EQUATION; VORTEX FORMATION; LANDAU MODEL; VORTICES; DYNAMICS; EQUILIBRIA; DERIVATION; STABILITY; MOTION;
D O I
10.1098/rspa.2017.0553
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider vortex dynamics in the context of Bose-Einstein condensates (BECs) with a rotating trap, with or without anisotropy. Starting with the Gross-Pitaevskii (GP) partial differential equation (PDE), we derive a novel reduced system of ordinary differential equations (ODEs) that describes stable configurations of multiple co-rotating vortices (vortex crystals). This description is found to be quite accurate quantitatively especially in the case of multiple vortices. In the limit of many vortices, BECs are known to form vortex crystal structures, whereby vortices tend to arrange themselves in a hexagonal-like spatial configuration. Using our asymptotic reduction, we derive the effective vortex crystal density and its radius. We also obtain an asymptotic estimate for the maximum number of vortices as a function of rotation rate. We extend considerations to the anisotropic trap case, confirming that a pair of vortices lying on the long (short) axis is linearly stable (unstable), corroborating the ODE reduction results with full PDE simulations. We then further investigate the many-vortex limit in the case of strong anisotropic potential. In this limit, the vortices tend to align themselves along the long axis, and we compute the effective one-dimensional vortex density, as well as the maximum admissible number of vortices. Detailed numerical simulations of the GP equation are used to confirm our analytical predictions.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Bifurcations of Multi-Vortex Configurations in Rotating Bose-Einstein Condensates
    Garcia-Azpeitia, C.
    Pelinovsky, D. E.
    MILAN JOURNAL OF MATHEMATICS, 2017, 85 (02) : 331 - 367
  • [2] Multi-vortex phase transitions in rotating Bose-Einstein condensates
    Vorov, OK
    Van Isacker, P
    Hussein, MS
    Kun, SY
    Bartschat, K
    NUCLEI AND MESOSCOPIC PHYSICS, 2005, 777 : 72 - 83
  • [3] Vortex lattices in rotating Bose-Einstein condensates
    Aftalion, Amandine
    Blanc, Xavier
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2006, 38 (03) : 874 - 893
  • [4] Efficiently computing vortex lattices in rapid rotating Bose-Einstein condensates
    Zeng, Rong
    Zhang, Yanzhi
    COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (06) : 854 - 860
  • [5] On the characterization of vortex configurations in the steady rotating Bose-Einstein condensates
    Kevrekidis, P. G.
    Pelinovsky, D. E.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2017, 473 (2208):
  • [6] Dynamics of Vortex Dipoles in Anisotropic Bose-Einstein Condensates
    Goodman, Roy H.
    Kevrekidis, P. G.
    Carretero-Gonzalez, R.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2015, 14 (02): : 699 - 729
  • [7] Bose-Einstein condensates in a ring optical lattices trap
    Xue, Ju-Kui
    Li, Guan-Qiang
    Peng, Ping
    PHYSICS LETTERS A, 2006, 358 (01) : 74 - 79
  • [8] Vortex nucleation processes in rotating lattices of Bose-Einstein condensates ruled by the on-site phases
    Jezek, D. M.
    Capuzzi, P.
    PHYSICAL REVIEW A, 2023, 108 (02)
  • [9] Vortex Rings in Fast Rotating Bose-Einstein Condensates
    Rougerie, Nicolas
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 203 (01) : 69 - 135
  • [10] Fast rotating Bose-Einstein condensates in an asymmetric trap
    Aftalion, Amandine
    Blanc, Xavier
    Lerner, Nicolas
    JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (03) : 753 - 806