PEGylation of superparamagnetic iron oxide nanoparticle for drug delivery applications with decreased toxicity: an in vivo study

被引:26
|
作者
Prabhu, Suma [1 ]
Mutalik, Srinivas [2 ]
Rai, Sharada [3 ]
Udupa, Nayanabhirama [4 ]
Rao, Bola Sadashiva Satish [1 ]
机构
[1] Manipal Univ, Sch Life Sci, Dept Radiat Biol & Toxicol, Manipal 576104, Karnataka, India
[2] Manipal Univ, Manipal Coll Pharmaceut Sci, Dept Pharmaceut, Manipal 576104, Karnataka, India
[3] Manipal Univ, Kasturba Med Coll, Dept Pathol, Mangalore 575001, Karnataka, India
[4] Manipal Univ, Director Res Hlth Sci, Manipal 576104, Karnataka, India
关键词
Genotoxicity; Organ-specific toxicity; Prussian blue staining; Superparamagnetic iron oxide nanoparticles; Biochemical Parameters; LUNG EPITHELIAL-CELLS; MAGNETIC NANOPARTICLES; OXIDATIVE STRESS; CELLULAR-RESPONSES; FERRIC-OXIDE; PARTICLES; SIZE; BIOCOMPATIBILITY; BIODISTRIBUTION; GENOTOXICITY;
D O I
10.1007/s11051-015-3216-x
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Superparamagnetic iron oxide nanoparticles (SPIONs) are evolving as a mainstay across various applications in the field of Science and Technology. SPIONs have enticed attention on the grounds of their unique physicochemical properties as well as potential applications in magnetic hyperthermia, immunoassays, as a contrast agent in magnetic resonance imaging and targeted drug delivery among others. Toward this goal, we synthesized SPIONs by chemical co-precipitation and PEGylated it. PEGylated SPIONs (PS) were studied for its detailed in vivo toxicity profile, in view of further surface engineering for its clinical applications. The intravenous LD50(14) of the PS was ascertained as 508.16 +/- A 41.52 mg/kg b wt. Histopathology of the vital organs of the animals injected with acute toxic doses showed pathological changes in spleen, lung, liver, and kidney. Accumulation of SPION was found in the aforementioned organs as confirmed by Prussian blue staining. Further, 1/10th dose of LD50(14) of PS and the Bare SPION (BS) was used to analyze a detailed toxicity profile, including genotoxicity (micronuclei formation and chromosomal aberration assays), organ-specific toxicity (a detailed serum biochemical analysis), and also determination of oxidative stress. The results of toxicity profile indicated no significant toxicity due to systemic exposure of PS. Atomic absorption spectroscopy (AAS) analysis confirmed the accumulation of SPION majorly in lungs, liver spleen, and kidneys. The present study thus indicated an optimal dose of PS which could be used for surface modification for targeted drug delivery applications with least toxicity.
引用
收藏
页数:22
相关论文
共 50 条
  • [11] The toxicity of superparamagnetic iron oxide nanoparticles induced on the testicular cells: In vitro study
    Dantas, Graziela de P. F.
    Ferraz, Fausto S.
    Coimbra, John L. P.
    Paniago, Roberto M.
    Dantas, Maria S. S.
    Lacerda, Samyra M. S. N.
    Procopio, Marcela S.
    Goncalves, Matheus F.
    Furtado, Marcelo H.
    Mendes, Barbara P.
    Lopez, Jorge L.
    Krohling, Alisson C.
    Martins, Estefania M. N.
    Andrade, Lidia M.
    Ladeira, Luiz O.
    Andrade, Angela L.
    Costa, Guilherme M. J.
    NANOIMPACT, 2024, 35
  • [12] Drug-Loaded and Superparamagnetic Iron Oxide Nanoparticle Surface-Embedded Amphiphilic Block Copolymer Micelles for Integrated Chemotherapeutic Drug Delivery and MR Imaging
    Hu, Jinming
    Qian, Yinfeng
    Wang, Xiaofeng
    Liu, Tao
    Liu, Shiyong
    LANGMUIR, 2012, 28 (04) : 2073 - 2082
  • [13] Evaluation of Toxicity and Neural Uptake In Vitro and In Vivo of Superparamagnetic Iron Oxide Nanoparticles
    Khalid, Muhammad Kamran
    Asad, Muhammad
    Henrich-Noack, Petra
    Sokolov, Maxim
    Hintz, Werner
    Grigartzik, Lisa
    Zhang, Enqi
    Dityatev, Alexander
    van Wachem, Berend
    Sabel, Bernhard A.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2018, 19 (09)
  • [14] In Vivo Clearance and Toxicity of Monodisperse Iron Oxide Nanocrystals
    Gu, Luo
    Fang, Ronnie H.
    Sailor, Michael J.
    Park, Ji-Ho
    ACS NANO, 2012, 6 (06) : 4947 - 4954
  • [15] Cell toxicity of superparamagnetic iron oxide nanoparticles
    Mahmoudi, M.
    Simchi, A.
    Milani, A. S.
    Stroeve, P.
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2009, 336 (02) : 510 - 518
  • [16] High-Density Branched PEGylation for Nanoparticle Drug Delivery
    Cahn, Devorah
    Duncan, Gregg A.
    CELLULAR AND MOLECULAR BIOENGINEERING, 2022, 15 (05) : 355 - 366
  • [17] Toxicity of superparamagnetic iron oxide nanoparticles to the microalga Chlamydomonas reinhardtii
    Hurtado-Gallego, Jara
    Pulido-Reyes, Gerardo
    Gonzalez-Pleiter, Miguel
    Salas, Gorka
    Leganes, Francisco
    Rosal, Roberto
    Fernandez-Pinas, Francisca
    CHEMOSPHERE, 2020, 238
  • [18] A mathematical model of superparamagnetic iron oxide nanoparticle magnetic behavior to guide the design of novel nanomaterials
    Ortega, Ryan A.
    Giorgio, Todd D.
    JOURNAL OF NANOPARTICLE RESEARCH, 2012, 14 (12)
  • [19] Iron oxide nanoparticle core-shell magnetic microspheres: Applications toward targeted drug delivery
    Ayyanaar, Srinivasan
    Kesavan, Mookkandi Palsamy
    Balachandran, Chandrasekar
    Rasala, Swetha
    Rameshkumar, Perumal
    Aoki, Shin
    Rajesh, Jegathalaprathaban
    Webster, Thomas J.
    Rajagopal, Gurusamy
    NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE, 2020, 24
  • [20] Incorporation and release of drug into/from superparamagnetic iron oxide nanoparticles
    Maver, Uros
    Bele, Marjan
    Makovec, Darko
    Campelj, Stanislav
    Jamnik, Janko
    Gaberscek, Miran
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2009, 321 (19) : 3187 - 3192