CONTACT NILPOTENT LIE ALGEBRAS

被引:15
作者
Alvarez, M. A. [1 ]
Rodriguez-Vallarte, M. C. [2 ]
Salgado, G. [2 ]
机构
[1] Univ Antofagasta, Dept Matemat, Antofagasta, Chile
[2] UASLP, Fac Ciencias, Av Salvador Nava S-nZona Univ, San Luis Potosi 78290, Mexico
关键词
SUPERALGEBRAS;
D O I
10.1090/proc/13341
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we show that for n >= 1, every finite (2n + 3)dimensional contact nilpotent Lie algebra g can be obtained as a double extension of a contact nilpotent Lie algebra h of codimension 2. As a consequence, for n >= 1, every (2n + 3)-dimensional contact nilpotent Lie algebra g can be obtained from the 3-dimensional Heisenberg Lie algebra h(3), by applying a finite number of successive series of double extensions. As a byproduct, we obtain an alternative proof of the fact that a (2n + 1)-nilpotent Lie algebra g is a contact Lie algebra if and only if it is a central extension of a nilpotent symplectic Lie algebra.
引用
收藏
页码:1467 / 1474
页数:8
相关论文
共 50 条
  • [31] Universal central extensions of Lie-Rinehart algebras
    Castiglioni, J. L.
    Garcia-Martinez, X.
    Ladra, M.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2018, 17 (07)
  • [32] Triple Lie Systems Associated with (-1,1) Algebras
    Borisova, L. R.
    Pchelintsev, S., V
    RUSSIAN MATHEMATICS, 2020, 64 (03) : 72 - 75
  • [33] REPRESENTATIONS AND T*-EXTENSIONS OF HOM-JORDAN-LIE ALGEBRAS
    Zhao, Jun
    Chen, Liangyun
    Ma, Lili
    COMMUNICATIONS IN ALGEBRA, 2016, 44 (07) : 2786 - 2812
  • [34] On the Lie-Algebraic Origin of Metric 3-Algebras
    de Medeiros, Paul
    Figueroa-O'Farrill, Jose
    Mendez-Escobar, Elena
    Ritter, Patricia
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 290 (03) : 871 - 902
  • [35] Jeu de taquin and diamond cone for Lie (super)algebras
    Agrebaoui, Boujemaa
    Arnal, Didier
    Ben Hassine, Abdelkader
    BULLETIN DES SCIENCES MATHEMATIQUES, 2015, 139 (01): : 75 - 113
  • [36] FUSION RULES AND COMPLETE REDUCIBILITY OF CERTAIN MODULES FOR AFFINE LIE ALGEBRAS
    Adamovic, Drazen
    Perse, Ozren
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2014, 13 (01)
  • [37] Clifford Algebra Realization of Certain Infinite-dimensional Lie Algebras
    Li, Li
    Wang, Chunyan
    Du, Xiufeng
    ALGEBRA COLLOQUIUM, 2011, 18 (01) : 105 - 120
  • [38] Extremal Weight Crystals Over Affine Lie Algebras of Infinite Rank
    Heo, Taehyeok
    ALGEBRAS AND REPRESENTATION THEORY, 2025, 28 (01) : 1 - 24
  • [39] Gaudin Hamiltonians on unitarizable modules over classical Lie (super)algebras
    Cheong, Wan Keng
    Lam, Ngau
    JOURNAL OF ALGEBRA, 2024, 642 : 400 - 431
  • [40] Hom-Lie algebras with symmetric invariant nondegenerate bilinear forms
    Benayadi, Said
    Makhlouf, Abdenacer
    JOURNAL OF GEOMETRY AND PHYSICS, 2014, 76 : 38 - 60