CONTACT NILPOTENT LIE ALGEBRAS

被引:15
作者
Alvarez, M. A. [1 ]
Rodriguez-Vallarte, M. C. [2 ]
Salgado, G. [2 ]
机构
[1] Univ Antofagasta, Dept Matemat, Antofagasta, Chile
[2] UASLP, Fac Ciencias, Av Salvador Nava S-nZona Univ, San Luis Potosi 78290, Mexico
关键词
SUPERALGEBRAS;
D O I
10.1090/proc/13341
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we show that for n >= 1, every finite (2n + 3)dimensional contact nilpotent Lie algebra g can be obtained as a double extension of a contact nilpotent Lie algebra h of codimension 2. As a consequence, for n >= 1, every (2n + 3)-dimensional contact nilpotent Lie algebra g can be obtained from the 3-dimensional Heisenberg Lie algebra h(3), by applying a finite number of successive series of double extensions. As a byproduct, we obtain an alternative proof of the fact that a (2n + 1)-nilpotent Lie algebra g is a contact Lie algebra if and only if it is a central extension of a nilpotent symplectic Lie algebra.
引用
收藏
页码:1467 / 1474
页数:8
相关论文
共 15 条
[1]   Odd-quadratic Lie superalgebras [J].
Albuquerque, Helena ;
Barreiro, Elisabete ;
Benayadi, Said .
JOURNAL OF GEOMETRY AND PHYSICS, 2010, 60 (02) :230-250
[2]   Symplectic structures on quadratic Lie algebras [J].
Bajo, Ignacio ;
Benayadi, Said ;
Medina, Alberto .
JOURNAL OF ALGEBRA, 2007, 316 (01) :174-188
[3]   Double extension of quadratic Lie superalgebras [J].
Benamor, H ;
Benayadi, S .
COMMUNICATIONS IN ALGEBRA, 1999, 27 (01) :67-88
[4]   Quadratic Lie superalgebras with the completely reducible action of the even part on the odd part [J].
Benayadi, S .
JOURNAL OF ALGEBRA, 2000, 223 (01) :344-366
[5]   Examples of compact K-contact manifolds with no Sasakian metric [J].
Cappelletti-Montano, Beniamino ;
De Nicola, Antonio ;
Marrero, Juan Carlos ;
Yudin, Ivan .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2014, 11 (09)
[6]   COHOMOLOGY THEORY OF LIE GROUPS AND LIE ALGEBRAS [J].
CHEVALLEY, C ;
EILENBERG, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1948, 63 (JAN) :85-124
[7]   Left invariant contact structures on Lie groups [J].
Diatta, Andre .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2008, 26 (05) :544-552
[8]  
Gong M.P, 1998, THESIS
[9]   Contact and Frobeniusian forms on Lie groups [J].
Goze, Michel ;
Remm, Elisabeth .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2014, 35 :74-94
[10]  
Gromov M.L., 1969, Izv. Akad. Nauk SSSR Ser. Mat, V33, P707