In this work we show that for n >= 1, every finite (2n + 3)dimensional contact nilpotent Lie algebra g can be obtained as a double extension of a contact nilpotent Lie algebra h of codimension 2. As a consequence, for n >= 1, every (2n + 3)-dimensional contact nilpotent Lie algebra g can be obtained from the 3-dimensional Heisenberg Lie algebra h(3), by applying a finite number of successive series of double extensions. As a byproduct, we obtain an alternative proof of the fact that a (2n + 1)-nilpotent Lie algebra g is a contact Lie algebra if and only if it is a central extension of a nilpotent symplectic Lie algebra.
机构:
UASLP, Fac Ciencias, Zona Univ, Av Salvador Nava S-N, San Luis Potosi 78290, SLP, MexicoUASLP, Fac Ciencias, Zona Univ, Av Salvador Nava S-N, San Luis Potosi 78290, SLP, Mexico
Rodriguez-Vallarte, M. C.
Salgado, G.
论文数: 0引用数: 0
h-index: 0
机构:
UASLP, Fac Ciencias, Zona Univ, Av Salvador Nava S-N, San Luis Potosi 78290, SLP, MexicoUASLP, Fac Ciencias, Zona Univ, Av Salvador Nava S-N, San Luis Potosi 78290, SLP, Mexico
机构:
Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, CanadaMem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada
Bahturin, Yuri
Bresar, Matej
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
Univ Maribor, Fac Nat Sci & Math, SLO-2000 Maribor, SloveniaMem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada
机构:
Univ Lorraine, Lab IECL, CNRS, UMR 7502, Ile Du Saulcy, FranceUniv Lorraine, Lab IECL, CNRS, UMR 7502, Ile Du Saulcy, France
Benayadi, Said
Hidri, Samiha
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lorraine, Lab IECL, CNRS, UMR 7502, Ile Du Saulcy, France
Fac Sci, Dept Math, Sfax BP, TunisiaUniv Lorraine, Lab IECL, CNRS, UMR 7502, Ile Du Saulcy, France
机构:
Zhejiang Normal Univ, Coll Math Phys & Informat Engn, Jinhua 321004, Zhejiang, Peoples R ChinaZhejiang Normal Univ, Coll Math Phys & Informat Engn, Jinhua 321004, Zhejiang, Peoples R China
Zhang, Xuemei
Zhou, Jianhua
论文数: 0引用数: 0
h-index: 0
机构:
Southeast Univ, Dept Math, Nanjing, Peoples R ChinaZhejiang Normal Univ, Coll Math Phys & Informat Engn, Jinhua 321004, Zhejiang, Peoples R China