Superresolution fluorescence microscopy for 3D reconstruction of thick samples

被引:13
|
作者
Park, Sangjun [1 ,2 ,3 ]
Kang, Wooyoung [1 ,2 ,3 ]
Kwon, Yeong-Dae [3 ,4 ]
Shim, Jaehoon [5 ]
Kim, Siyong [5 ]
Kaang, Bong-Kiun [5 ]
Hohng, Sungchul [1 ,2 ,3 ]
机构
[1] Seoul Natl Univ, Dept Phys & Astron, Seoul, South Korea
[2] Seoul Natl Univ, Inst Appl Phys, Seoul, South Korea
[3] Seoul Natl Univ, Natl Ctr Creat Res Initiat, Seoul, South Korea
[4] Seoul Natl Univ, Res Inst Basic Sci, Seoul, South Korea
[5] Seoul Natl Univ, Sch Biol Sci, Seoul, South Korea
来源
MOLECULAR BRAIN | 2018年 / 11卷
基金
新加坡国家研究基金会;
关键词
Line-scan confocal microscopy; DNA-PAINT; Superresolution microscopy; Single-molecule localization microscopy; Three-dimensional reconstruction; DIFFRACTION RESOLUTION LIMIT; DNA-PAINT; ILLUMINATION MICROSCOPY; PLANE ILLUMINATION; EXCHANGE-PAINT; CELLS; LOCALIZATION; PROBES; BREAKING; SPECTRIN;
D O I
10.1186/s13041-018-0361-z
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Three-dimensional (3D) reconstruction of thick samples using superresolution fluorescence microscopy remains challenging due to high level of background noise and fast photobleaching of fluorescence probes. We develop superresolution fluorescence microscopy that can reconstruct 3D structures of thick samples with both high localization accuracy and no photobleaching problem. The background noise is reduced by optically sectioning the sample using line-scan confocal microscopy, and the photobleaching problem is overcome by using the DNA-PAINT (Point Accumulation for Imaging in Nanoscale Topography). As demonstrations, we take 3D superresolution images of microtubules of a whole cell, and two-color 3D images of microtubules and mitochondria. We also present superresolution images of chemical synapse of a mouse brain section at different z-positions ranging from 0 mu m to 100 mu m.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] High-resolution solid modeling of biological samples imaged with 3D fluorescence microscopy
    Ferko, Michael C.
    Patterson, Brian W.
    Butler, Peter J.
    MICROSCOPY RESEARCH AND TECHNIQUE, 2006, 69 (08) : 648 - 655
  • [32] Exploring cell-surface nanopillar interactions with 3D superresolution microscopy
    Roy, Anish R.
    Zhang, Wei
    Jahed, Zeinab
    Tsai, Ching-Ting
    Cui, Bianxiao
    Moerner, William E.
    BIOPHYSICAL JOURNAL, 2022, 121 (03) : 278A - 278A
  • [33] Calibrating Fluorescence Microscopy With 3D-Speckler (3D Fluorescence Speckle Analyzer)
    Lin, Chieh-Chang
    Suzuki, Aussie
    BIO-PROTOCOL, 2024, 14 (16):
  • [34] Combined video fluorescence and 3D electron microscopy
    Mironov, Alexander A.
    Polishchuk, Roman S.
    Beznoussenko, Galina V.
    INTRODUCTION TO ELECTRON MICROSCOPY FOR BIOLOGISTS, 2008, 88 : 83 - +
  • [35] Robust Signal Detection in 3D Fluorescence Microscopy
    Allalou, Amin
    Pinidiyaarachchi, Amalka
    Wahlby, Carolina
    CYTOMETRY PART A, 2010, 77A (01) : 86 - 96
  • [36] Statistical Deconvolution for Superresolution Fluorescence Microscopy
    Mukamel, Eran A.
    Babcock, Hazen
    Zhuang, Xiaowei
    BIOPHYSICAL JOURNAL, 2012, 102 (10) : 2391 - 2400
  • [37] 3D Reconstruction of Neurons in Electron Microscopy Images
    Ensafi, Shahab
    Lu, Shijian
    Kassim, Ashraf A.
    Tan, Chew Lim
    2014 36TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2014, : 6732 - 6735
  • [38] 3D RECONSTRUCTION OF HUMAN HAIR BY CONFOCAL MICROSCOPY
    CORCUFF, P
    GREMILLET, P
    JOURLIN, M
    DUVAULT, Y
    LEROY, F
    LEVEQUE, JL
    JOURNAL OF THE SOCIETY OF COSMETIC CHEMISTS, 1993, 44 (01): : 1 - 12
  • [39] Compressive Confocal Microscopy: 3D Reconstruction Algorithms
    Ye, P.
    Paredes, J. L.
    Wu, Y.
    Chen, C.
    Arce, G. R.
    Prather, D. W.
    EMERGING DIGITAL MICROMIRROR DEVICE BASED SYSTEMS AND APPLICATIONS, 2009, 7210
  • [40] COMPRESSIVE RECONSTRUCTION FOR 3D INCOHERENT HOLOGRAPHIC MICROSCOPY
    Cossairt, Oliver
    He, Kuan
    Shang, Ruibo
    Matsuda, Nathan
    Sharma, Manoj
    Huang, Xiang
    Katsaggelos, Aggelos
    Spinoulas, Leonidas
    Yoo, Seunghwan
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 958 - 962