Combining genetic mapping with genome-wide expression in experimental autoimmune encephalomyelitis highlights a gene network enriched for T cell functions and candidate genes regulating autoimmunity

被引:10
|
作者
Hedreul, Melanie Thessen [1 ]
Moeller, Steffen [2 ,3 ]
Stridh, Pernilla [1 ]
Gupta, Yask [2 ]
Gillett, Alan [1 ]
Beyeen, Amennai Daniel [1 ]
Oeckinger, Johan [1 ]
Flytzani, Sevasti [1 ]
Diez, Margarita [1 ]
Olsson, Tomas [1 ]
Jagodic, Maja [1 ]
机构
[1] Karolinska Inst, Ctr Mol Med L8 04, Dept Clin Neurosci, Neuroimmunol Unit, S-17176 Stockholm, Sweden
[2] Med Univ Lubeck, Dept Dermatol, D-23538 Lubeck, Germany
[3] Med Univ Lubeck, Inst Neuro & Bioinformat, D-23538 Lubeck, Germany
基金
瑞典研究理事会;
关键词
MYELIN OLIGODENDROCYTE GLYCOPROTEIN; QUANTITATIVE TRAIT LOCI; MULTIPLE-SCLEROSIS; TRANSCRIPTION FACTOR; SUSCEPTIBILITY LOCI; IL-2; GENE; IDENTIFICATION; ASSOCIATION; RECEPTOR; DISEASE;
D O I
10.1093/hmg/ddt343
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The experimental autoimmune encephalomyelitis (EAE) is an autoimmune disease of the central nervous system commonly used to study multiple sclerosis (MS). We combined clinical EAE phenotypes with genome-wide expression profiling in spleens from 150 backcross rats between susceptible DA and resistant PVG rat strains during the chronic EAE phase. This enabled correlation of transcripts with genotypes, other transcripts and clinical EAE phenotypes and implicated potential genetic causes and pathways in EAE. We detected 2285 expression quantitative trait loci (eQTLs). Sixty out of 599 cis-eQTLs overlapped well-known EAE QTLs and constitute positional candidate genes, including Ifit1 (Eae7), Atg7 (Eae20-22), Klrc3 (eEae22) and Mfsd4 (Eae17). A trans-eQTL that overlaps Eae23a regulated a large number of small RNAs and implicates a master regulator of transcription. We defined several disease-correlated networks enriched for pathways involved in cell-mediated immunity. They include C-type lectins, G protein coupled receptors, mitogen-activated protein kinases, transmembrane proteins, suppressors of transcription (Jundp2 and Nr1d1) and STAT transcription factors (Stat4) involved in interferon signaling. The most significant network was enriched for T cell functions, similar to genetic findings in MS, and revealed both established and novel gene interactions. Transcripts in the network have been associated with T cell proliferation and differentiation, the TCR signaling and regulation of regulatory T cells. A number of network genes and their family members have been associated with MS and/or other autoimmune diseases. Combining disease and genome-wide expression phenotypes provides a link between disease risk genes and distinct molecular pathways that are dysregulated during chronic autoimmune inflammation.
引用
收藏
页码:4952 / 4966
页数:15
相关论文
共 1 条
  • [1] Genetic mapping and genome-wide association study identify BhYAB4 as the candidate gene regulating seed shape in wax gourd (Benincasa hispida)
    Luo, Chen
    Yan, Jinqiang
    Liu, Wenrui
    Xu, Yuanchao
    Sun, Piaoyun
    Wang, Min
    Xie, Dasen
    Jiang, Biao
    FRONTIERS IN PLANT SCIENCE, 2022, 13