p-nilpotency criteria for some verbal subgroups

被引:2
作者
Contreras-Rojas, Yerko [1 ]
Grazian, Valentina [2 ]
Monetta, Carmine [3 ]
机构
[1] Univ Fed Sul & Sudeste Para, Fac Math, Inst Exact Sci, Ave Ipes,Cidade Univ, Maraba, Para, Brazil
[2] Univ Milano Bicocca, Dept Math & Applicat, Via Roberto Cozzi 55, I-20125 Milan, Italy
[3] Univ Salerno, Dept Math, via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy
关键词
p-nilpotency; Lower central word; Derived word; FINITE; COMMUTATORS; ORDERS;
D O I
10.1016/j.jalgebra.2022.07.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we address the problem of understanding when a verbal subgroup of a finite group is p-nilpotent, with p a prime, that is, when all its elements of p'-order determine a subgroup. We provide two p-nilpotency criteria, one for the terms of the lower central series of any finite group and one for the terms of the derived series of any finite soluble group, which relies on arithmetic properties related to the order of products of commutators.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:926 / 936
页数:11
相关论文
共 16 条
[11]  
Khukhro E. I., 1998, London Math. Soc. Lecture Note Series, V246
[12]   Commutators in finite quasisimple groups [J].
Liebeck, Martin W. ;
O'Brien, E. A. ;
Shalev, Aner ;
Pham Huu Tiep .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2011, 43 :1079-1092
[13]   The Ore conjecture [J].
Liebeck, Martin W. ;
O'Brien, E. A. ;
Shalev, Aner ;
Tiep, Pham Huu .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2010, 12 (04) :939-1008
[14]   A NILPOTENCY CRITERION FOR SOME VERBAL SUBGROUPS [J].
Monetta, Carmine ;
Tortora, Antonio .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2019, 100 (02) :281-289
[15]   Prime divisors of orders of products [J].
Moreto, Alexander ;
Saez, Azahara .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2019, 149 (05) :1153-1162
[16]  
The GAP Group, 2013, GAP GROUPS ALG PROGR