p-nilpotency criteria for some verbal subgroups

被引:2
作者
Contreras-Rojas, Yerko [1 ]
Grazian, Valentina [2 ]
Monetta, Carmine [3 ]
机构
[1] Univ Fed Sul & Sudeste Para, Fac Math, Inst Exact Sci, Ave Ipes,Cidade Univ, Maraba, Para, Brazil
[2] Univ Milano Bicocca, Dept Math & Applicat, Via Roberto Cozzi 55, I-20125 Milan, Italy
[3] Univ Salerno, Dept Math, via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy
关键词
p-nilpotency; Lower central word; Derived word; FINITE; COMMUTATORS; ORDERS;
D O I
10.1016/j.jalgebra.2022.07.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we address the problem of understanding when a verbal subgroup of a finite group is p-nilpotent, with p a prime, that is, when all its elements of p'-order determine a subgroup. We provide two p-nilpotency criteria, one for the terms of the lower central series of any finite group and one for the terms of the derived series of any finite soluble group, which relies on arithmetic properties related to the order of products of commutators.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:926 / 936
页数:11
相关论文
共 16 条
[1]   On nilpotency of higher commutator subgroups of a finite soluble group [J].
Alves, Josean Da Silva ;
Shumyatsky, Pavel .
ARCHIV DER MATHEMATIK, 2021, 116 (01) :1-6
[2]   On p-nilpotence of finite groups [J].
Asaad, M .
JOURNAL OF ALGEBRA, 2004, 277 (01) :157-164
[3]   Some results on p-nilpotence and solubility of finite groups [J].
Ballester-Bolinches, A ;
Guo, XY .
JOURNAL OF ALGEBRA, 2000, 228 (02) :491-496
[4]   A sufficient condition for nilpotency of the commutator subgroup [J].
Bastos, R. ;
Shumyatsky, P. .
SIBERIAN MATHEMATICAL JOURNAL, 2016, 57 (05) :762-763
[5]   Coprime commutators in finite groups [J].
Bastos, Raimundo ;
Monetta, Carmine .
COMMUNICATIONS IN ALGEBRA, 2019, 47 (10) :4137-4147
[6]   A criterion for metanilpotency of a finite group [J].
Bastos, Raimundo ;
Monetta, Carmine ;
Shumyatsky, Pavel .
JOURNAL OF GROUP THEORY, 2018, 21 (04) :713-718
[7]  
Baumslag B, 2014, Arxiv, DOI arXiv:1411.2877
[8]   Existence of normal Hall subgroups by means of orders of products [J].
Beltran, Antonio ;
Saez, Azahara .
MATHEMATISCHE NACHRICHTEN, 2019, 292 (04) :720-723
[9]   Order of products of elements in finite groups [J].
Beltran, Antonio ;
Lyons, Richard ;
Moreto, Alexander ;
Navarro, Gabriel ;
Saez, Azahara ;
Pham Huu Tiep .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2019, 99 (02) :535-552
[10]  
Gorenstein D., 1980, Finite Groups