Modeling the ternary chalcogenide Na2MoSe4from first-principles

被引:2
作者
Palos, Etienne [1 ,2 ]
Reyes-Serrato, Armando [2 ,3 ]
Alonso-Nunez, Gabriel [2 ]
Sanchez, J. Guerrero [2 ]
机构
[1] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA
[2] Univ Nacl Autonoma Mexico, Ctr Nanociencias & Nanotecnol, Ensenada 22800, BC, Mexico
[3] Donostia Int Phys Ctr, P Manuel de Lardizabal 4, Donostia San Sebastian 20018, Spain
关键词
transition metal chalcogenides; electronic structure; modified Becke-Johnson potential; alkali metal chalcogenides; density functional theory; TB09; semiconductor; CRYSTAL-STRUCTURE; AB-INITIO; BAND-GAP; PEROVSKITES; DENSITY; SEMICONDUCTOR; SUPERCONDUCTIVITY; CONVERSION; COMPOUND; PRESSURE;
D O I
10.1088/1361-648X/abaf91
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
In the ongoing pursuit of inorganic compounds suitable for solid-state devices, transition metal chalcogenides have received heightened attention due to their physical and chemical properties. Recently, alkali-ion transition metal chalcogenides have been explored as promising candidates to be applied in optoelectronics, photovoltaics and energy storage devices. In this work, we present a theoretical study of sodium molybdenum selenide (Na2MoSe4). First-principles computations were performed on a set of hypothetical crystal structures to determine the ground state and electronic properties of Na2MoSe4. We find that the equilibrium structure of Na(2)MoSe(4)is a simple orthorhombic (oP) lattice, with space groupPnma, as evidenced by thermodynamics. Finally, meta-GGA computations were performed to model the band structure ofoPNa(2)MoSe(4)at a predictive level. We employ the Tran-Blaha modified Becke-Johnson potential to demonstrate thatoPNa(2)MoSe(4)has a direct bandgap at the Gamma point that is suitable for optoelectronics. Our results provide a foundation for future studies concerned with the modeling of inorganic and hybrid organic-inorganic materials chemically analogous to Na2MoSe4.
引用
收藏
页数:9
相关论文
共 58 条
[31]  
MONKHORST HJ, 1976, PHYS REV B, V13, P5188, DOI [10.1103/PhysRevB.13.5188, 10.1103/PhysRevB.16.1746]
[32]  
MULLER A, 1974, Z ANORG ALLG CHEM, V403, P251, DOI 10.1002/zaac.19744030305
[33]  
Murphy DW., 1987, Chemical Physics of Intercalation, P173, DOI [10.1007/978-1-4757-9649-0_8, DOI 10.1007/978-1-4757-9649-0_8]
[34]   Computational and experimental investigation for new transition metal selenides and sulfides: The importance of experimental verification for stability [J].
Narayan, Awadhesh ;
Bhutani, Ankita ;
Rubeck, Samantha ;
Eckstein, James N. ;
Shoemaker, Daniel P. ;
Wagner, Lucas K. .
PHYSICAL REVIEW B, 2016, 94 (04)
[35]   A density functional (PBE, PBEsol, HSE06) study of the structural, electronic and optical properties of the ternary compounds AgAlX2 (X = S, Se, Te) [J].
Nguimdo, G. M. Dongho ;
Joubert, Daniel P. .
EUROPEAN PHYSICAL JOURNAL B, 2015, 88 (05)
[36]   Bandgap Control via Structural and Chemical Tuning of Transition Metal Perovskite Chalcogenides [J].
Niu, Shanyuan ;
Huyan, Huaixun ;
Liu, Yang ;
Yeung, Matthew ;
Ye, Kevin ;
Blankemeier, Louis ;
Orvis, Thomas ;
Sarkar, Debarghya ;
Singh, David J. ;
Kapadia, Rehan ;
Ravichandran, Jayakanth .
ADVANCED MATERIALS, 2017, 29 (09)
[37]   Restoring the density-gradient expansion for exchange in solids and surfaces [J].
Perdew, John P. ;
Ruzsinszky, Adrienn ;
Csonka, Gabor I. ;
Vydrov, Oleg A. ;
Scuseria, Gustavo E. ;
Constantin, Lucian A. ;
Zhou, Xiaolan ;
Burke, Kieron .
PHYSICAL REVIEW LETTERS, 2008, 100 (13)
[38]   Chalcogenide perovskites - an emerging class of ionic semiconductors [J].
Perera, Samanthe ;
Hui, Haolei ;
Zhao, Chuan ;
Xue, Hongtao ;
Sun, Fan ;
Deng, Chenhua ;
Gross, Nelson ;
Milleville, Chris ;
Xu, Xiaohong ;
Watson, David F. ;
Weinstein, Bernard ;
Sun, Yi-Yang ;
Zhang, Shengbai ;
Zeng, Hao .
NANO ENERGY, 2016, 22 :129-135
[39]  
RAYMOND CC, 1995, ABSTR PAP AM CHEM S, V210, P2
[40]  
Reynolds M A, 2015, US Patent, Patent No. 8940268