Stability of Periodic Orbits in the Averaging Theory: Applications to Lorenz and Thomas Differential Systems

被引:2
作者
Candido, Murilo R. [1 ]
Llibre, Jaume [1 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2018年 / 28卷 / 03期
关键词
Averaging theory; circulant system; stability of periodic orbit; Lorenz system; Thomas system; LABYRINTH CHAOS;
D O I
10.1142/S0218127418300070
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide new results in studying a kind of stability of periodic orbits provided by the higher-order averaging theory. Then, we apply these results to determining the k-hyperbolicity of some periodic orbits of the Lorenz and Thomas differential systems.
引用
收藏
页数:14
相关论文
共 13 条
[1]  
[Anonymous], 2007, Appl. Math. Sci
[2]   A second order analysis of the periodic solutions for nonlinear periodic differential systems with a small parameter [J].
Buica, Adriana ;
Gine, Jaume ;
Llibre, Jaume .
PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (05) :528-533
[3]   Persistence of periodic solutions for higher order perturbed differential systems via Lyapunov-Schmidt reduction [J].
Candido, Murilo R. ;
Llibre, Jaume ;
Novaes, Douglas D. .
NONLINEARITY, 2017, 30 (09) :3560-3586
[4]   New results on averaging theory and applications [J].
Candido, Murilo R. ;
Llibre, Jaume .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (04)
[5]   Improving the averaging theory for computing periodic solutions of the differential equations [J].
Llibre, Jaume ;
Novaes, Douglas D. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (04) :1401-1412
[6]   Higher order averaging theory for finding periodic solutions via Brouwer degree [J].
Llibre, Jaume ;
Novaes, Douglas D. ;
Teixeira, Marco A. .
NONLINEARITY, 2014, 27 (03) :563-583
[7]   QUALITATIVE DYNAMICS FROM ASYMPTOTIC EXPANSIONS - LOCAL THEORY [J].
MURDOCK, J ;
ROBINSON, C .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1980, 36 (03) :425-441
[8]   A NOTE ON THE ASYMPTOTIC-EXPANSION OF EIGENVALUES [J].
MURDOCK, J ;
ROBINSON, C .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1980, 11 (03) :458-467
[9]  
Murdock J., 1988, DYNAMICS REPORTED, P91
[10]   Labyrinth chaos [J].
Sprott, J. C. ;
Chlouverakis, Konstantinos E. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (06) :2097-2108