Improving the evaluation sensitivity of an ultrasonic pulse echo technique using a neural network classifier

被引:6
|
作者
Thavasimuthu, M
Rajagopalan, C
Kalyanasundaram, P
Raj, B
机构
[1] Division for PIE and NDT Development, Indira Gandhi Ctr. for Atom. Res., Kalpakkam
关键词
multiparameter approach; neural network classifier; weak signals; signal classification; ultrasonic testing;
D O I
10.1016/0963-8695(96)80001-5
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this paper, the use of an artificial neural network (ANN) for classifying weak ultrasonic signals has been attempted. The limitations of using a single conventional parameter for signal detection and classification (namely peak amplitude alone) are highlighted. Use of a multi-parameter approach is suggested. The ANN used is a multi-layered, feedforward, error-backpropagation network. Results are compared with those of conventional approaches. Copyright (C) 1996 Elsevier Science Ltd
引用
收藏
页码:175 / 179
页数:5
相关论文
共 36 条
  • [21] Improved Ultrasonic Dead Zone Detectability of Work Rolls Using a Convolutional Neural Network
    Yeom, Yun-Taek
    Kim, Hun-Hee
    Park, Jinhyun
    Kim, Hak-Joon
    Song, Sung-Jin
    APPLIED SCIENCES-BASEL, 2022, 12 (10):
  • [22] Ultrasonic testing of rivet in multilayer structure using a convolutional neural network on edge device
    Le, Minhhuy
    Le, Duc Vu
    Le, Tien Dat
    Lee, Jinyi
    SCIENCE PROGRESS, 2023, 106 (02)
  • [23] System Invariant Method for Ultrasonic Flaw Classification in Weldments Using Residual Neural Network
    Park, Jinhyun
    Lee, Seung-Eun
    Kim, Hak-Joon
    Song, Sung-Jin
    Kang, Sung-Sik
    APPLIED SCIENCES-BASEL, 2022, 12 (03):
  • [24] Detection of epilepsy using discrete cosine harmonic wavelet transform-based features and neural network classifier
    Kiranmayi, G. R.
    Udayashankara, V.
    INTERNATIONAL JOURNAL OF BIOMEDICAL ENGINEERING AND TECHNOLOGY, 2020, 32 (02) : 109 - 122
  • [25] Unplanned Dilution Prediction in Open Stope Mining: Developing New Design Charts Using Artificial Neural Network Classifier
    Korigov, Sultan
    Adoko, Amoussou Coffi
    Sengani, Fhatuwani
    JOURNAL OF SUSTAINABLE MINING, 2022, 21 (02): : 157 - 168
  • [26] A hybrid approach to faults detection and diagnosis in batch and semi-batch reactors by using EKF and neural network classifier
    Benkouider, A. M.
    Kessas, R.
    Yahiaoui, A.
    Buvat, J. C.
    Guella, S.
    JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2012, 25 (04) : 694 - 702
  • [27] Damage localization method using ultrasonic lamb waves and Wav2Vec2.0 neural network
    Qian, Lubin
    Liu, Sihao
    Fan, Guopeng
    Liu, Xinlong
    Zhang, Hui
    Mei, Yaohua
    Xing, Yuhui
    Wang, Zhiqiang
    FRONTIERS IN MATERIALS, 2023, 10
  • [28] Automatic classification of welding defects from ultrasonic signals using an SVM-based RBF neural network approach
    Chen, Yuan
    Ma, Hong-Wei
    Dong, Ming
    INSIGHT, 2018, 60 (04) : 194 - +
  • [29] Automatic Text Recognition in Natural Scene Using Neural Network Classifier with Dynamic-group-based Hybrid Particle Swarm Optimization
    Tang, Kuang-Hui
    Huang, Chuan-Kuei
    Lin, Cheng-Jian
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2019, 35 (03) : 555 - 575
  • [30] Neural spike sorting under nearly 0-dB signal-to-noise ratio using nonlinear energy operator and artificial neural-network classifier
    Kim, KH
    Kim, SJ
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2000, 47 (10) : 1406 - 1411