A haemodynamic brain-computer interface based on real-time classification of near infrared spectroscopy signals during motor imagery and mental arithmetic

被引:37
|
作者
Stangl, Matthias [1 ,2 ]
Bauernfeind, Guenther [3 ]
Kurzmann, Juergen [1 ]
Scherer, Reinhold [3 ]
Neuper, Christa [1 ,3 ]
机构
[1] Graz Univ, Dept Psychol, Sect Neuropsychol, A-8010 Graz, Austria
[2] German Ctr Neurodegenerat Dis DZNE, D-39120 Magdeburg, Germany
[3] Graz Univ Technol, Inst Knowledge Discovery, Lab Brain Comp Interfaces, A-8010 Graz, Austria
关键词
brain-computer interface (BCI); near infrared (NIR) spectroscopy; motor imagery; mental arithmetic; real-time classification; PREFRONTAL CORTEX ACTIVITY; CEREBRAL-BLOOD-FLOW; OXIDATIVE-METABOLISM; OXYGENATION; COMMUNICATION; PERFORMANCE; SYSTEM; FMRI; BCI;
D O I
10.1255/jnirs.1048
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Over the past decade, an increasing number of studies have investigated near infrared (NIR) spectroscopy for signal acquisition in brain-computer interface (BCI) systems. However, although a BCI relies on classifying brain signals in real-time, the majority of previous studies did not perform real-time NIR spectroscopy signal classification but derived knowledge about the feasibility of NIR spectroscopy for BCI purposes from offline analyses. The present study investigates whether NIR spectroscopy signals evoked by two different mental tasks (i.e. motor imagery and mental arithmetic) can be classified in real-time in order to control a NIR-BCI application. Furthermore, since this is the first study that attempts to distinguish between the haemodynamic responses to these two tasks, we aimed to investigate whether this task-combination is feasible for controlling a NIR-BCI. Twelve healthy participants were asked to control a moving ball on a computer screen by performing motor imagery and mental arithmetic tasks. The real-time classification of their task-specific NIR spectroscopy signals yielded accuracy rates ranging from 45% up to 93%. Offline analyses across all participants showed that both tasks evoked different haemodynamic responses in prefrontal and sensorimotor cortex areas. On the one hand, these results demonstrate the considerable potential of NIR spectroscopy for BCI signal acquisition and the feasibility of the applied mental tasks for NIR-BCI control. On the other hand, since the classification accuracy showed an unsatisfactory stability across measurement sessions, we conclude that further investigations and progress in methodological issues are needed and we discuss further steps that have to be taken until it is conceivable to implement a real-time capable NIR-BCI that works with sufficient accuracy across a large group of individuals.
引用
收藏
页码:157 / 171
页数:15
相关论文
共 50 条
  • [31] The effects of varying levels of mental workload on motor imagery based brain-computer interface
    Gu, Bin
    Chen, Long
    Ke, Yufeng
    Zhou, Yijie
    Yu, Haiqing
    Wang, Kun
    Ming, Dong
    INTERNATIONAL JOURNAL OF EMBEDDED SYSTEMS, 2020, 12 (03) : 315 - 323
  • [32] Fused Group Lasso: A New EEG Classification Model With Spatial Smooth Constraint for Motor Imagery-Based Brain-Computer Interface
    Zhang, Shaorong
    Zhu, Zhibin
    Zhang, Benxin
    Feng, Bao
    Yu, Tianyou
    Li, Zhi
    IEEE SENSORS JOURNAL, 2021, 21 (02) : 1764 - 1778
  • [33] A Motor Imagery Based Brain-Computer Interface for Stroke Rehabilitation
    Ortner, R.
    Irimia, D. -C.
    Scharinger, J.
    Guger, C.
    ANNUAL REVIEW OF CYBERTHERAPY AND TELEMEDICINE, 2012, 10 : 319 - 323
  • [34] Symmetrical feature for interpreting motor imagery EEG signals in the brain-computer interface
    Park, Seung-Min
    Yu, Xinyang
    Chum, Pharino
    Lee, Woo-Young
    Sim, Kwee-Bo
    OPTIK, 2017, 129 : 163 - 171
  • [35] Subject-Specific feature selection for near infrared spectroscopy based brain-computer interfaces
    Aydin, Eda Akman
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2020, 195
  • [36] Evaluation of various mental task combinations for near-infrared spectroscopy-based brain-computer interfaces
    Hwang, Han-Jeong
    Lim, Jeong-Hwan
    Kim, Do-Won
    Im, Chang-Hwan
    JOURNAL OF BIOMEDICAL OPTICS, 2014, 19 (07)
  • [37] Effects of Task Complexity on Motor Imagery-Based Brain-Computer Interface
    Mashat, M. Ebrahim M.
    Lin, Chin-Teng
    Zhang, Dingguo
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2019, 27 (10) : 2178 - 2185
  • [38] Mental effort detection when using a motor imagery-based brain-computer interface
    Arpaia, Pasquale
    Esposito, Antonio
    Gargiulo, Ludovica
    Moccaldi, Nicola
    Natalizio, Angela
    Parvis, Marco
    Robbio, Rachele
    2024 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, I2MTC 2024, 2024,
  • [39] SOURCES OF EEG ACTIVITY MOST RELEVANT TO PERFORMANCE OF BRAIN-COMPUTER INTERFACE BASED ON MOTOR IMAGERY
    Frolov, Alexander
    Husek, Dusan
    Bobrov, Pavel
    Korshakov, Alexey
    Chernikova, Lyudmila
    Konovalov, Rodion
    Mokienko, Olesya
    NEURAL NETWORK WORLD, 2012, 22 (01) : 21 - 37
  • [40] Fuzzy Integral With Particle Swarm Optimization for a Motor-Imagery-Based Brain-Computer Interface
    Wu, Shang-Lin
    Liu, Yu-Ting
    Hsieh, Tsung-Yu
    Lin, Yang-Yin
    Chen, Chih-Yu
    Chuang, Chun-Hsiang
    Lin, Chin-Teng
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2017, 25 (01) : 21 - 28