A haemodynamic brain-computer interface based on real-time classification of near infrared spectroscopy signals during motor imagery and mental arithmetic

被引:37
|
作者
Stangl, Matthias [1 ,2 ]
Bauernfeind, Guenther [3 ]
Kurzmann, Juergen [1 ]
Scherer, Reinhold [3 ]
Neuper, Christa [1 ,3 ]
机构
[1] Graz Univ, Dept Psychol, Sect Neuropsychol, A-8010 Graz, Austria
[2] German Ctr Neurodegenerat Dis DZNE, D-39120 Magdeburg, Germany
[3] Graz Univ Technol, Inst Knowledge Discovery, Lab Brain Comp Interfaces, A-8010 Graz, Austria
关键词
brain-computer interface (BCI); near infrared (NIR) spectroscopy; motor imagery; mental arithmetic; real-time classification; PREFRONTAL CORTEX ACTIVITY; CEREBRAL-BLOOD-FLOW; OXIDATIVE-METABOLISM; OXYGENATION; COMMUNICATION; PERFORMANCE; SYSTEM; FMRI; BCI;
D O I
10.1255/jnirs.1048
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Over the past decade, an increasing number of studies have investigated near infrared (NIR) spectroscopy for signal acquisition in brain-computer interface (BCI) systems. However, although a BCI relies on classifying brain signals in real-time, the majority of previous studies did not perform real-time NIR spectroscopy signal classification but derived knowledge about the feasibility of NIR spectroscopy for BCI purposes from offline analyses. The present study investigates whether NIR spectroscopy signals evoked by two different mental tasks (i.e. motor imagery and mental arithmetic) can be classified in real-time in order to control a NIR-BCI application. Furthermore, since this is the first study that attempts to distinguish between the haemodynamic responses to these two tasks, we aimed to investigate whether this task-combination is feasible for controlling a NIR-BCI. Twelve healthy participants were asked to control a moving ball on a computer screen by performing motor imagery and mental arithmetic tasks. The real-time classification of their task-specific NIR spectroscopy signals yielded accuracy rates ranging from 45% up to 93%. Offline analyses across all participants showed that both tasks evoked different haemodynamic responses in prefrontal and sensorimotor cortex areas. On the one hand, these results demonstrate the considerable potential of NIR spectroscopy for BCI signal acquisition and the feasibility of the applied mental tasks for NIR-BCI control. On the other hand, since the classification accuracy showed an unsatisfactory stability across measurement sessions, we conclude that further investigations and progress in methodological issues are needed and we discuss further steps that have to be taken until it is conceivable to implement a real-time capable NIR-BCI that works with sufficient accuracy across a large group of individuals.
引用
收藏
页码:157 / 171
页数:15
相关论文
共 50 条
  • [21] Turbo-Satori: a neurofeedback and brain-computer interface toolbox for real-time functional near-infrared spectroscopy
    Luhrs, Michael
    Goebel, Rainer
    NEUROPHOTONICS, 2017, 4 (04)
  • [22] Signal classification algorithm in motor imagery based on asynchronous brain-computer interface
    Jiang, Yu
    He, Jingyan
    Li, Dandan
    Jin, Jing
    Shen, Yi
    2019 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2019, : 1422 - 1426
  • [23] Classification of Motor Imagery for Ear-EEG based Brain-Computer Interface
    Kim, Yong-Jeong
    Kwak, No-Sang
    Lee, Seong-Whan
    2018 6TH INTERNATIONAL CONFERENCE ON BRAIN-COMPUTER INTERFACE (BCI), 2018, : 129 - 130
  • [24] Multiclass classification of hemodynamic responses for performance improvement of functional near-infrared spectroscopy-based brain-computer interface
    Shin, Jaeyoung
    Jeong, Jichai
    JOURNAL OF BIOMEDICAL OPTICS, 2014, 19 (06)
  • [25] Exploring methodological frameworks for a mental task-based near-infrared spectroscopy brain-computer interface
    Weyand, Sabine
    Takehara-Nishiuchi, Kaori
    Chau, Tom
    JOURNAL OF NEUROSCIENCE METHODS, 2015, 254 : 36 - 45
  • [26] Real-Time Single Channel EEG Motor Imagery based Brain Computer Interface
    Camacho, Jaime
    Manian, Vidya
    2016 WORLD AUTOMATION CONGRESS (WAC), 2016,
  • [27] Convolutional neural network based features for motor imagery EEG signals classification in brain-computer interface system
    Taheri, Samaneh
    Ezoji, Mehdi
    Sakhaei, Sayed Mahmoud
    SN APPLIED SCIENCES, 2020, 2 (04):
  • [28] EEG-Based Brain-Computer Interfaces for Real-Time Decoding of Mental States
    Curio, G.
    Blankertz, B.
    Mueller, K. -R.
    KLINISCHE NEUROPHYSIOLOGIE, 2012, 43 (03) : 213 - 219
  • [29] Investigation of different approaches for noise reduction in functional near-infrared spectroscopy signals for brain-computer interface applications
    Janani, A.
    Sasikala, M.
    NEURAL COMPUTING & APPLICATIONS, 2017, 28 (10) : 2889 - 2903
  • [30] A Predictive Speller Controlled by a Brain-Computer Interface Based on Motor Imagery
    D'Albis, Tiziano
    Blatt, Rossella
    Tedesco, Roberto
    Sbattella, Licia
    Matteucci, Matteo
    ACM TRANSACTIONS ON COMPUTER-HUMAN INTERACTION, 2012, 19 (03)