Dependence of eigenvalues of a class of fourth-order Sturm-Liouville problems on the boundary

被引:16
|
作者
Ge, Suqin [1 ]
Wang, Wanyi [1 ]
Suo, Jianqing [1 ]
机构
[1] Inner Mongolia Univ, Dept Math, Hohhot 010021, Peoples R China
关键词
Fourth-order Sturm-Liouville problems; Boundary condition; Eigenvalues; OPERATORS;
D O I
10.1016/j.amc.2013.06.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the dependence of eigenvalues of a class of fourth-order Sturm-Liouville problems on the boundary. We show that the eigenvalues depend not only continuously but smoothly on boundary points, and that the derivative of the nth eigenvalue as a function of an endpoint satisfies a first order differential equation. In addition, we prove that as the length of the interval shrinks to zero all higher fourth-order Dirichlet eigenvalues march off to plus infinity, this is also true for the first (i.e., lowest) eigenvalue. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:268 / 276
页数:9
相关论文
共 50 条
  • [21] Spectral parameter power series for fourth-order Sturm-Liouville problems
    Khmelnytskaya, Kira V.
    Kravchenko, Vladislav V.
    Baldenebro-Obeso, Jesus A.
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (08) : 3610 - 3624
  • [22] Positive solutions of fourth-order Sturm-Liouville boundary value problems with changing sign nonlinearity
    Zhang, Xinguang
    Liu, Lishan
    Jiang, Jiqiang
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (12) : 4764 - 4774
  • [23] A simple approach for determining the eigenvalues of the fourth-order Sturm-Liouville problem with variable coefficients
    Huang, Yong
    Chen, Jian
    Luo, Qi-Zhi
    APPLIED MATHEMATICS LETTERS, 2013, 26 (07) : 729 - 734
  • [24] On Using Bernstein Scheme for Computation of the Eigenvalues of Fourth-Order Sturm–Liouville Problems
    El-Gamel M.
    Abd El-Hady M.
    International Journal of Applied and Computational Mathematics, 2021, 7 (4)
  • [25] Sampling for the fourth-order Sturm-Liouville differential operator
    Boumenir, A
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 278 (02) : 542 - 550
  • [26] THE DEPENDENCE OF THE EIGENVALUES OF THE STURM-LIOUVILLE PROBLEM ON BOUNDARY CONDITIONS
    Harutyunyan, T. N.
    MATEMATICKI VESNIK, 2008, 60 (04): : 285 - 294
  • [27] ON THE SQUARE ROOT OF THE OPERATOR OF STURM-LIOUVILLE FOURTH-ORDER
    Shaldanbayev, A. Sh.
    Imanbayeva, A. B.
    Beisebayeva, A. Zh.
    Shaldanbayeva, A. A.
    NEWS OF THE NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN-SERIES PHYSICO-MATHEMATICAL, 2019, 3 (325): : 85 - 96
  • [28] Positive solutions of fourth-order nonlinear singular Sturm-Liouville eigenvalue problems
    Liu, Lishan
    Zhang, Xinguang
    Wu, Yonghong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 326 (02) : 1212 - 1224
  • [29] Algorithm 775: The code SLEUTH for solving fourth-order Sturm-Liouville problems
    Greenberg, L
    Marletta, M
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1997, 23 (04): : 453 - 493
  • [30] Algorithm 775: The code SLEUTH for solving fourth-order Sturm-Liouville problems
    Univ of Maryland, College Park, United States
    ACM Trans Math Software, 4 (453-493):