Dependence of eigenvalues of a class of fourth-order Sturm-Liouville problems on the boundary

被引:15
作者
Ge, Suqin [1 ]
Wang, Wanyi [1 ]
Suo, Jianqing [1 ]
机构
[1] Inner Mongolia Univ, Dept Math, Hohhot 010021, Peoples R China
关键词
Fourth-order Sturm-Liouville problems; Boundary condition; Eigenvalues; OPERATORS;
D O I
10.1016/j.amc.2013.06.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the dependence of eigenvalues of a class of fourth-order Sturm-Liouville problems on the boundary. We show that the eigenvalues depend not only continuously but smoothly on boundary points, and that the derivative of the nth eigenvalue as a function of an endpoint satisfies a first order differential equation. In addition, we prove that as the length of the interval shrinks to zero all higher fourth-order Dirichlet eigenvalues march off to plus infinity, this is also true for the first (i.e., lowest) eigenvalue. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:268 / 276
页数:9
相关论文
共 11 条
[1]   Sturm-Liouville problems whose leading coefficient function changes sign [J].
Cao, XF ;
Kong, QK ;
Wu, HY ;
Zettl, A .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2003, 55 (04) :724-749
[2]  
Courant R., 1989, Methods of mathematical physics, V1
[3]   EIGENVALUES VARIATION .1. NEUMANN PROBLEM FOR STURM-LIOUVILLE OPERATORS [J].
DAUGE, M ;
HELFFER, B .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1993, 104 (02) :243-262
[4]   EIGENVALUES VARIATION .2. MULTIDIMENSIONAL PROBLEMS [J].
DAUGE, M ;
HELFFER, B .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1993, 104 (02) :263-297
[5]   Eigenvalues of regular Sturm-Liouville problems [J].
Kong, Q ;
Zettl, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 131 (01) :1-19
[6]   Dependence of eigenvalues of Sturm-Liouville problems on the boundary [J].
Kong, Q ;
Zettl, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 126 (02) :389-407
[7]  
Kong Q, 2000, P ROY SOC EDINB A, V130, P561
[8]  
Kong QK, 2008, P ROY SOC EDINB A, V138, P323
[9]   Dependence of the nth Sturm-Liouville eigenvalue on the problem [J].
Kong, QK ;
Wu, HY ;
Zettl, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 156 (02) :328-354
[10]   The classification of self-adjoint boundary conditions: Separated, coupled, and mixed [J].
Wang, Aiping ;
Sun, Jiong ;
Zettl, Anton .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (06) :1554-1573