Current Status of Machine Learning-Based Methods for Identifying Protein-Protein Interaction Sites

被引:7
|
作者
Wang, Bing [1 ]
Sun, Wenlong [1 ]
Zhang, Jun [2 ]
Chen, Peng [3 ]
机构
[1] Anhui Univ Technol, Sch Elect Engn & Informat, Maanshan 243002, Anhui, Peoples R China
[2] Anhui Univ, Sch Elect Engn & Automat, Hefei 230601, Anhui, Peoples R China
[3] Chinese Acad Sci, Hefei Inst Intelligent Machines, Hefei 230031, Anhui, Peoples R China
基金
美国国家科学基金会;
关键词
Bioinformatics; machine learning; protein feature; protein interaction site; system biology; whole pipeline; BINDING-SITES; RESIDUE CONSERVATION; SECONDARY STRUCTURE; INTERFACE RESIDUES; SEQUENCE PROFILE; INTERACTION MAPS; DNA-BINDING; PREDICTION; EVOLUTION; IDENTIFICATION;
D O I
10.2174/1574893611308020005
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
High-throughput experimental technologies continue to alter the study of current system biology. Investigators are understandably eager to harness the power of these new technologies. Protein-protein interactions on these platforms, however, present numerous production and bioinformatics challenges. Some issues like feature extraction, feature representation, prediction algorithm and results analysis have become increasingly problematic in the prediction of protein-protein interaction sites. The development of powerful, efficient prediction methods for inferring protein interface residues based on protein primary sequence or/and 3D structure is critical for the research community to accelerate research and publications. Currently, machine learning-based approaches are drawing the most attention in predicting protein interaction sites. This review aims to describe the state of the whole pipeline when machine learning strategies are applied to infer protein interaction sites.
引用
收藏
页码:177 / 182
页数:6
相关论文
共 50 条
  • [31] Identifying essential proteins based on protein domains in protein-protein interaction networks
    Wang, Jianxin
    Peng, Wei
    Chen, Yingjiao
    Lu, Yu
    Pan, Yi
    2013 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2013,
  • [32] Prediction of Protein-Protein Interaction Sites Using Back Propagation Neural Networks
    Wang, Feilu
    Song, Yang
    2013 NINTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2013, : 1057 - 1061
  • [33] Prediction of Protein-Protein Interaction Sites by Random Forest Algorithm with mRMR and IFS
    Li, Bi-Qing
    Feng, Kai-Yan
    Chen, Lei
    Huang, Tao
    Cai, Yu-Dong
    PLOS ONE, 2012, 7 (08):
  • [34] Prediction of protein-protein interaction sites in intrinsically disordered proteins
    Chen, Ranran
    Li, Xinlu
    Yang, Yaqing
    Song, Xixi
    Wang, Cheng
    Qiao, Dongdong
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2022, 9
  • [35] Structure-Based Approaches for Protein-Protein Interaction Prediction Using Machine Learning and Deep Learning
    Kiouri, Despoina P.
    Batsis, Georgios C.
    Chasapis, Christos T.
    BIOMOLECULES, 2025, 15 (01)
  • [36] Developing Computational Model to Predict Protein-Protein Interaction Sites Based on the XGBoost Algorithm
    Deng, Aijun
    Zhang, Huan
    Wang, Wenyan
    Zhang, Jun
    Fan, Dingdong
    Chen, Peng
    Wang, Bing
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (07)
  • [37] Glioma stages prediction based on machine learning algorithm combined with protein-protein interaction networks
    Niu, Bing
    Liang, Chaofeng
    Lu, Yi
    Zhao, Manman
    Chen, Qin
    Zhang, Yuhui
    Zheng, Linfeng
    Chou, Kuo-Chen
    GENOMICS, 2020, 112 (01) : 837 - 847
  • [38] IntPred: a structure-based predictor of protein-protein interaction sites
    Northey, Thomas C.
    Baresic, Anja
    Martin, Andrew C. R.
    BIOINFORMATICS, 2018, 34 (02) : 223 - 229
  • [39] Protein-Protein Interaction Sites are Hot Spots for Disease-Associated Nonsynonymous SNPs
    David, Alessia
    Razali, Rozami
    Wass, Mark N.
    Sternberg, Michael J. E.
    HUMAN MUTATION, 2012, 33 (02) : 359 - 363
  • [40] Ensemble learning model for Protein-Protein interaction prediction with multiple Machine learning techniques
    Lai, Zhenghui
    Li, Mengshan
    Chen, Qianyong
    Gu, Yunlong
    Wang, Nan
    Guan, Lixin
    MEASUREMENT, 2025, 242