Zero-range condensation at criticality

被引:30
作者
Armendariz, Ines [1 ]
Grosskinsky, Stefan [2 ]
Loulakis, Michail [3 ,4 ]
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Buenos Aires, DF, Argentina
[2] Univ Warwick, Inst Math, Coventry CV4 7AL, W Midlands, England
[3] Natl Tech Univ Athens, Sch Appl Math & Phys Sci, Athens 15780, Greece
[4] FORTH, Inst Appl & Computat Math, Iraklion, Greece
基金
英国工程与自然科学研究理事会;
关键词
Zero-range process; Condensation; Conditional maximum; Subexponential tails; INVARIANT-MEASURES; LIMIT-THEOREM; DEVIATIONS;
D O I
10.1016/j.spa.2013.04.021
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Zero-range processes with jump rates that decrease with the number of particles per site can exhibit a condensation transition, where a positive fraction of all particles condenses on a single site when the total density exceeds a critical value. We consider rates which decay as a power law or a stretched exponential to a non-zero limiting value, and study the onset of condensation at the critical density. We establish a law of large numbers for the excess mass fraction in the maximum, as well as distributional limits for the fluctuations of the maximum and the fluctuations in the bulk. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:3466 / 3496
页数:31
相关论文
共 26 条
[1]   Convergence to the maximal invariant measure for a zero-range process with random rates [J].
Andjel, ED ;
Ferrari, PA ;
Guiol, H ;
Landim, C .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2000, 90 (01) :67-81
[2]   INVARIANT-MEASURES FOR THE ZERO RANGE PROCESS [J].
ANDJEL, ED .
ANNALS OF PROBABILITY, 1982, 10 (03) :525-547
[3]   Conditional distribution of heavy tailed random variables on large deviations of their sum [J].
Armendariz, Ines ;
Loulakis, Michail .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2011, 121 (05) :1138-1147
[4]   Thermodynamic limit for the invariant measures in supercritical zero range processes [J].
Armendariz, Ines ;
Loulakis, Michail .
PROBABILITY THEORY AND RELATED FIELDS, 2009, 145 (1-2) :175-188
[5]   Metastability of reversible condensed zero range processes on a finite set [J].
Beltran, J. ;
Landim, C. .
PROBABILITY THEORY AND RELATED FIELDS, 2012, 152 (3-4) :781-807
[6]   Tunneling and Metastability of Continuous Time Markov Chains [J].
Beltran, J. ;
Landim, C. .
JOURNAL OF STATISTICAL PHYSICS, 2010, 140 (06) :1065-1114
[7]  
Billingsley P., 1968, CONVERGE PROBAB MEAS
[8]   Critical region for droplet formation in the two-dimensional Ising model [J].
Biskup, M ;
Chayes, L ;
Kotecky, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 242 (1-2) :137-183
[9]   On the formation/dissolution of equilibrium droplets [J].
Biskup, M ;
Chayes, L ;
Kotecky, R .
EUROPHYSICS LETTERS, 2002, 60 (01) :21-27
[10]   Finite Size Effects and Metastability in Zero-Range Condensation [J].
Chleboun, Paul ;
Grosskinsky, Stefan .
JOURNAL OF STATISTICAL PHYSICS, 2010, 140 (05) :846-872