Constructing and analyzing of a unique three-dimensional chaotic autonomous system exhibiting three families of hidden attractors

被引:21
作者
Kingni, Sifeu Takougang [1 ,4 ,5 ,6 ]
Jafari, Sajad [2 ]
Viet-Thanh Pham [3 ]
Woafo, Paul [4 ,5 ,6 ]
机构
[1] Univ Maroua, Inst Mines & Petr Ind, Dept Mech & Elect Engn, POB 46, Maroua, Cameroon
[2] Amirkabir Univ Technol, Dept Biomed Engn, 424 Hafez Ave, Tehran 158754413, Iran
[3] Hanoi Univ Sci & Technol, Sch Elect & Telecommun, 01 Dai Co Viet, Hanoi, Vietnam
[4] Univ Yaounde I, Dept Phys, Fac Sci, Lab Modelling & Simulat Engn Biomimet & Prototype, POB 812, Yaounde, Cameroon
[5] Univ Yaounde I, Dept Phys, Fac Sci, TWAS Res Unit, POB 812, Yaounde, Cameroon
[6] Vrije Univ Brussel, Appl Phys Res Grp APHY, Pleinlaan 2, B-1050 Brussels, Belgium
关键词
Chaos; Three-dimensional autonomous chaotic system; System with line equilibria; System without equilibria; Stable equilibrium; HYPERCHAOTIC SYSTEM; EQUILIBRIUM; OSCILLATIONS; FLOWS;
D O I
10.1016/j.matcom.2016.06.010
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A three-dimensional chaotic autonomous system is proposed in this paper. This system has a unique property: it can belong to three different families of chaotic systems with hidden attractors: (a) systems with a line of equilibria, (b) systems with only stable equilibria, and (c) systems with no equilibria. Dynamics of this system are investigated through eigenvalue structures, phase portraits, basin of attraction, bifurcation diagram and Lyapunov exponents. The physical existence of the chaotic behavior found in the proposed system is verified by using OrCAD- PSpice software. A good qualitative agreement is shown between the simulations and the PSpice results. (C) 2016 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:172 / 182
页数:11
相关论文
共 39 条
  • [1] Algorithms for Finding Hidden Oscillations in Nonlinear Systems. The Aizerman and Kalman Conjectures and Chua's Circuits
    Bragin, V. O.
    Vagaitsev, V. I.
    Kuznetsov, N. V.
    Leonov, G. A.
    [J]. JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL, 2011, 50 (04) : 511 - 543
  • [2] Yet another chaotic attractor
    Chen, GR
    Ueta, T
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (07): : 1465 - 1466
  • [3] New class of chaotic systems with circular equilibrium
    Gotthans, Tomas
    Petrzela, Jiri
    [J]. NONLINEAR DYNAMICS, 2015, 81 (03) : 1143 - 1149
  • [4] SOME SIMPLE CHAOTIC FLOWS - REMARK
    HOOVER, WG
    [J]. PHYSICAL REVIEW E, 1995, 51 (01): : 759 - 760
  • [5] Recent new examples of hidden attractors
    Jafari, S.
    Sprott, J. C.
    Nazarimehr, F.
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2015, 224 (08) : 1469 - 1476
  • [6] Multiscroll Chaotic Sea Obtained from a Simple 3D System Without Equilibrium
    Jafari, Sajad
    Pham, Viet-Thanh
    Kapitaniak, Tomasz
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (02):
  • [7] Simple chaotic flows with a line equilibrium
    Jafari, Sajad
    Sprott, J. C.
    [J]. CHAOS SOLITONS & FRACTALS, 2013, 57 : 79 - 84
  • [8] Bursting oscillations in a 3D system with asymmetrically distributed equilibria: Mechanism, electronic implementation and fractional derivation effect
    Kingni, S. T.
    Nana, B.
    Ngueuteu, G. S. Mbouna
    Woafo, P.
    Danckaert, J.
    [J]. CHAOS SOLITONS & FRACTALS, 2015, 71 : 29 - 40
  • [9] Nonlinear dynamics in VCSELs driven by a sinusoidally modulated current and Rossler oscillator
    Kingni, S. T.
    Mbe, J. H. Talla
    Woafo, P.
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2012, 127 (05): : 1 - 10
  • [10] Kuznetsov N., 2010, IFAC P, V43, P29, DOI [DOI 10.3182/20100826-3-TR-4016.00009, 10.3182/20100826-3-TR-4016.00009]