TWO-DIMENSIONAL RIEMANN PROBLEMS FOR CHAPLYGIN GAS

被引:59
作者
Chen, Shuxing [1 ]
Qu, Aifang [2 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[2] Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan 430071, Peoples R China
关键词
Riemann problem; Chaplygin gas; wave interaction; Euler system; HYPERBOLIC SYSTEMS;
D O I
10.1137/110838091
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study two-dimensional Riemann problems of the Euler system for Chaplygin gas with initial data being three constant states separated by a Y-type curve. We prove that the general two-dimensional Y-type Riemann problem for the isentropic and irrotational Chaplygin gas admits a global self-similar solution, provided that the three initial states are close enough. Meanwhile, we describe the global wave structure in general cases. Our conclusion extends Lax's result for the one-dimensional Riemann problem of compressible flow to the two-dimensional case for Chaplygin gas.
引用
收藏
页码:2146 / 2178
页数:33
相关论文
共 24 条
[1]   Generalized Chaplygin gas, accelerated expansion, and dark-energy-matter unification [J].
Bento, MC ;
Bertolami, O ;
Sen, AA .
PHYSICAL REVIEW D, 2002, 66 (04)
[2]   Solutions with concentration to the Riemann problem for the one-dimensional chaplygin gas equations [J].
Brenier, Y .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2005, 7 (Suppl 3) :S326-S331
[3]   Riemann problems for the two-dimensional unsteady transonic small disturbance equation [J].
Canic, S ;
Keyfitz, BL .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1998, 58 (02) :636-665
[4]  
CHAPLYGIN S., 1904, T MOSKOV U MAT FIZ, V21, P1
[5]   Global solutions of shock reflection by large-angle wedges for potential flow [J].
Chen, Gui-Qiang ;
Feldman, Mikhail .
ANNALS OF MATHEMATICS, 2010, 171 (02) :1067-1182
[6]   Interaction of rarefaction waves in jet stream [J].
Chen, Shuxing ;
Qu, Aifang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (12) :2931-2954
[7]  
Chen SX, 1997, CHINESE ANN MATH B, V18, P345
[8]  
CHEN SX, 1995, CHINESE SCI BULL, V40, P535
[9]  
Chen SX, 1997, AMS IP STUD ADV MATH, V3, P157
[10]  
Courant R., 1948, Supersonic Flows and Shock Waves