Shear Stress Induces Phenotypic Modulation of Vascular Smooth Muscle Cells via AMPK/mTOR/ULK1-Mediated Autophagy

被引:55
|
作者
Sun, Liqian [1 ,2 ]
Zhao, Manman [3 ]
Liu, Aihua [1 ,2 ]
Lv, Ming [1 ,2 ]
Zhang, Jingbo [1 ,2 ]
Li, Youxiang [1 ,2 ]
Yang, Xinjian [1 ,2 ]
Wu, Zhongxue [1 ,2 ]
机构
[1] Capital Med Univ, Beijing Neurosurg Inst, Dept Intervent Neuroradiol, 6 Tiantan Xili, Beijing 100050, Peoples R China
[2] Capital Med Univ, Beijing Tiantan Hosp, 6 Tiantan Xili, Beijing 100050, Peoples R China
[3] North China Univ Sci & Technol, Dept Histol & Embryol, Tangshan, Hebei, Peoples R China
基金
中国博士后科学基金;
关键词
Vascular smooth muscle cells; Intracranial aneurysms; Shear stress; Phenotypic modulation; Autophagy; ANEURYSM FORMATION;
D O I
10.1007/s10571-017-0505-1
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Phenotypic modulation of vascular smooth muscle cells (VSMCs) is involved in the pathophysiological processes of the intracranial aneurysms (IAs). Although shear stress has been implicated in the proliferation, migration, and phenotypic conversion of VSMCs, the molecular mechanisms underlying these events are currently unknown. In this study, we investigated whether shear stress(SS)-induced VSMC phenotypic modulation was mediated by autophagy involved in adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR)/Unc-51-like kinase 1 (ULK1) pathway. The results show that shear stress could inhibit the expression of key VSMC contractile genes and induce pro-inflammatory/matrix-remodeling genes levels, contributing to VSMCs phenotypic switching from a contractile to a synthetic phenotype. More importantly, Shear stress also markedly increased the levels of the autophagy marker microtubule-associated protein light chain 3-II (LC3II), Beclin-1, and p62 degradation. The autophagy inhibitor 3-methyladenine (3-MA) significantly blocked shear-induced phenotypic modulation of VSMCs. To further explore the molecular mechanism involved in shear-induced autophagy, we found that shear stress could activate AMPK/mTOR/ULK1 signaling pathway in VSMCs. Compound C, a pharmacological inhibitor of AMPK, significantly reduced the levels of p-AMPK and p-ULK, enhanced p-mTOR level, and finally decreased LC3II and Beclin-1 level, which suggested that activated AMPK/mTOR/ULK1 signaling was related to shear-mediated autophagy. These results indicate that shear stress promotes VSMC phenotypic modulation through the induction of autophagy involved in activating the AMPK/mTOR/ULK1 pathway.
引用
收藏
页码:541 / 548
页数:8
相关论文
empty
未找到相关数据