Precipitation Strengthening in Ni-Cu Alloys Fabricated Using Wire Arc Additive Manufacturing Technology

被引:15
|
作者
Marenych, Olexandra [1 ,2 ]
Kostryzhev, Andrii [1 ]
Shen, Chen [1 ,2 ]
Pan, Zengxi [1 ,2 ]
Li, Huijun [1 ,2 ]
van Duin, Stephen [1 ,2 ]
机构
[1] Univ Wollongong, Sch Mech Mat Mechatron & Biomed Engn, Northfields Ave, Wollongong, NSW 2500, Australia
[2] Def Mat Technol Ctr, Hawthorn, Vic 3122, Australia
基金
澳大利亚研究理事会;
关键词
Ni-Cu alloys; wire arc additive manufacturing; microstructure characterisation; mechanical properties; wear resistance; TITANIUM; STEEL; TI;
D O I
10.3390/met9010105
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Two Ni-Cu alloys, Monel K500 and FM60, with various contents of Ti, Mn, Al, Fe and C were deposited in the form of plates on a metal base plate using wire arc additive manufacturing technology. Three deposition speeds have been applied: 300, 400 and 500 mm/min. To modify the as-welded microstructure and properties, the deposited walls/plates have been subjected to two heat treatment procedures: annealing at 1100 degrees C for 15 min, slow cooling to 610 degrees C, ageing at this temperature for 8 h and either (i) air cooling to room temperature or (ii) slow cooling to 480 degrees C, ageing at this temperature for 8 h and air cooling to room temperature. The microstructure characterisation and mechanical properties testing have been conducted for each of the 18 chemistry/processing conditions. The dependences of the precipitate's parameters (size, number density and chemistry), mechanical properties and wear resistance on the alloy composition, deposition speed and heat treatment have been obtained. In Monel K500, the precipitates were mainly of the TiC/TiCN type, and in FM60, they were of the MnS and TiAlMgO types. Monel K500 has shown higher hardness, strength, toughness and wear resistance in all studied conditions. Ageing at 610 degrees C improved properties in both alloys following the precipitation of new particles. Ageing at 480 degrees C could result in a properties loss if the particle coarsening (decrease in number density) took place.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Microstructure and corrosion resistance of Ni-Cu alloy fabricated through wire arc additive manufacturing
    Kannan, A. Rajesh
    Kumar, S. Mohan
    Pramod, R.
    Shanmugam, N. Siva
    Vishnukumar, M.
    Channabasavanna, S. G.
    MATERIALS LETTERS, 2022, 308
  • [2] Effect of chemical composition on microstructure, strength and wear resistance of wire deposited Ni-Cu alloys
    Marenych, O. O.
    Ding, D.
    Pan, Z.
    Kostryzhev, A. G.
    Li, H.
    van Duin, S.
    ADDITIVE MANUFACTURING, 2018, 24 : 30 - 36
  • [3] Comparative effect of Mn/Ti solute atoms and TiC/Ni3(Al,Ti) nano-particles on work hardening behaviour in Ni-Cu alloys fabricated by wire arc additive manufacturing
    Marenych, O. O.
    Kostryzhev, A. G.
    Pan, Z.
    Li, H.
    van Duin, S.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2019, 753 : 262 - 275
  • [4] Modulation of characteristic zones in NiTi alloys fabricated via wire arc additive manufacturing
    Zhang, Mugong
    Li, Xinzhi
    Fang, Xuewei
    Wang, Binglin
    Chen, Xinxian
    Jiao, Genghao
    Huang, Ke
    MATERIALS CHARACTERIZATION, 2024, 209
  • [5] Material-property evaluation of magnesium alloys fabricated using wire-and-arc-based additive manufacturing
    Takagi, Hisataka
    Sasahara, Hiroyuki
    Abe, Takeyuki
    Sannomiya, Hiroki
    Nishiyama, Shinichiro
    Ohta, Shuichiro
    Nakamura, Kunimitsu
    ADDITIVE MANUFACTURING, 2018, 24 : 498 - 507
  • [6] Microstructure and mechanical properties of Mg-Li alloys fabricated by wire arc additive manufacturing
    Xie, Jilin
    Zhou, Yuhan
    Zhou, Chunpei
    Li, Xiaopeng
    Chen, Yuhua
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 29 : 3487 - 3493
  • [7] Research Status and Development Trend of Wire Arc Additive Manufacturing Technology for Aluminum Alloys
    Dai, Pan
    Li, Ao
    Zhang, Jianxun
    Chen, Runjie
    Luo, Xian
    Wen, Lei
    Wang, Chen
    Lv, Xianghong
    COATINGS, 2024, 14 (09)
  • [8] Wire Arc Additive Manufacturing of Aluminium Alloys
    Ouellet, Theo
    Croteau, Maxime
    Bois-Brochu, Alexandre
    Levesque, Julie
    15TH INTERNATIONAL ALUMINIUM CONFERENCE, INALCO 2023, 2023,
  • [9] Wire-Arc Additive Manufacturing Using Ni1Cu Weathering Steel
    Zhang, Haitao
    Wu, Suisong
    Shi, Rumeng
    Guo, Chun
    CRYSTAL RESEARCH AND TECHNOLOGY, 2021, 56 (12)
  • [10] Microstructure and properties of CuCrZr alloy fabricated by wire arc additive manufacturing
    Diao, Zhaowei
    Yang, Fei
    Xiong, Tao
    Chen, Lin
    Wu, Yifei
    Rong, Mingzhe
    MATERIALS LETTERS, 2023, 339