Dynamics of quantum tomography in an open system

被引:0
作者
Uchiyama, Chikako [1 ]
机构
[1] Univ Yamanashi, Grad Sch, Dept Interdisciplinary Res, Kofu, Yamanashi 4008511, Japan
关键词
tomography; muons; quantum dissipative systems; PROJECTION OPERATOR-FORMALISM; LINEAR-DIFFERENTIAL EQUATIONS; STAR-PRODUCT KERNEL; DENSITY-MATRIX; PROBABILITY REPRESENTATION; STATISTICAL-MECHANICS; SYMPLECTIC TOMOGRAPHY; CUMULANT EXPANSION; RIGOROUS SOLUTION; SPIN RELAXATION;
D O I
10.1088/0031-8949/90/7/074064
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this study, we provide a way to describe the dynamics of quantum tomography in an open system with a generalized master equation, considering a case where the relevant system under tomographic measurement is influenced by the environment. We apply this to spin tomography because such situations typically occur in mu SR (muon spin rotation/relaxation/resonance) experiments where microscopic features of the material are investigated by injecting muons as probes. As a typical example to describe the interaction between muons and a sample material, we use a spin-boson model where the relevant spin interacts with a bosonic environment. We describe the dynamics of a spin tomogram using a time-convolutionless type of generalized master equation that enables us to describe short time scales and/or low-temperature regions. Through numerical evaluation for the case of Ohmic spectral density with an exponential cutoff, a clear interdependency is found between the time evolution of elements of the density operator and a spin tomogram. The formulation in this paper may provide important fundamental information for the analysis of results from, for example, mu SR experiments on short time scales and/or in low-temperature regions using spin tomography.
引用
收藏
页数:8
相关论文
共 58 条
[1]   State reconstruction for a collection of two-level systems [J].
Agarwal, GS .
PHYSICAL REVIEW A, 1998, 57 (01) :671-673
[2]   ATOMIC COHERENT STATES IN QUANTUM OPTICS [J].
ARECCHI, FT ;
THOMAS, H ;
GILMORE, R ;
COURTENS, E .
PHYSICAL REVIEW A, 1972, 6 (06) :2211-&
[3]   Generalized tomographic maps [J].
Asorey, M. ;
Facchi, P. ;
Man'ko, V. I. ;
Marmo, G. ;
Pascazio, S. ;
Sudarshan, E. C. G. .
PHYSICAL REVIEW A, 2008, 77 (04)
[4]   Radon transform on the cylinder and tomography of a particle on the circle [J].
Asorey, M. ;
Facchi, P. ;
Man'ko, V. I. ;
Marmo, G. ;
Pascazio, S. ;
Sudarshan, E. G. C. .
PHYSICAL REVIEW A, 2007, 76 (01)
[5]  
Belousov Yu. M., 1990, Soviet Physics - Uspekhi, V33, P911, DOI 10.1070/PU1990v033n11ABEH002655
[6]   Relaxation Equation for Muon Spin Tomogram in Probability Representation [J].
Belousov, Yu. M. ;
Filippov, S. N. ;
Man'ko, V. I. ;
Traskunov, I. V. .
OPTICS AND SPECTROSCOPY, 2012, 112 (03) :359-364
[7]   RELAXATION EQUATIONS FOR THE QUBIT IN THE TOMOGRAPHIC REPRESENTATION [J].
Belousov, Yury M. ;
Filippov, Sergey N. ;
Man'ko, Vladimir I. ;
Traskunov, Igor V. .
JOURNAL OF RUSSIAN LASER RESEARCH, 2011, 32 (06) :584-595
[8]   MuSR METHOD AND TOMOGRAPHIC-PROBABILITY REPRESENTATION OF SPIN STATES [J].
Belousov, Yury M. ;
Filippov, Sergey N. ;
Gorelkin, Vladimir N. ;
Man'ko, Vladimir I. .
JOURNAL OF RUSSIAN LASER RESEARCH, 2010, 31 (05) :421-442
[9]   A TOMOGRAPHIC APPROACH TO WIGNER FUNCTION [J].
BERTRAND, J ;
BERTRAND, P .
FOUNDATIONS OF PHYSICS, 1987, 17 (04) :397-405
[10]  
Breuer H. P., 2002, The Theory of Open Quantum Systems