Corrosion behavior of CuCrFeNiMn high entropy alloy system in 1M sulfuric acid solution

被引:103
|
作者
Ren, B. [1 ]
Liu, Z. X. [1 ]
Li, D. M. [1 ]
Shi, L. [1 ]
Cai, B. [1 ]
Wang, M. X. [1 ]
机构
[1] Zhengzhou Univ, Sch Phys & Engn, Key Lab Mat Phys, Zhengzhou 450052, Peoples R China
来源
MATERIALS AND CORROSION-WERKSTOFFE UND KORROSION | 2012年 / 63卷 / 09期
关键词
corrosion resistance; Galvanic corrosion; high-entropy alloy; segregation degree; NANOSTRUCTURED NITRIDE FILMS; STAINLESS-STEEL; COMPRESSIVE PROPERTIES; RECENT PROGRESS; MICROSTRUCTURE; COPPER; TI; HARDNESS; MO; CU;
D O I
10.1002/maco.201106072
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Immersion tests and potentiodynamic polarization measurements were conducted in 1 M sulfuric acid solution (H2SO4) at ambient temperature (similar to 25?degrees C) to investigate the corrosion behavior of CuCrFeNiMn alloy system. The results show that the alloys display a good general corrosion resistance that is mainly influenced by the Cu content and elemental segregation degree. The corrosion resistance degrades when increasing Cu content and elemental segregation degree. Among the tested alloys, the CuCr2Fe2Ni2Mn2 alloy with low Cu content and elemental segregation degree displays a better general corrosion resistance. On the contrary, the Cu2CrFe2NiMn2 alloy with high Cu content and elemental segregation degree exhibits the worst general corrosion resistance.
引用
收藏
页码:828 / 834
页数:7
相关论文
共 50 条
  • [41] Corrosion behavior of as-cast Al0.75CoCr1.25FeNi high entropy alloy in 0.5 mol/L sulfuric acid
    Nie, Sijia
    Zheng, Zhibin
    Qiao, Yanxin
    Duan, Yurong
    Cui, Jie
    Mekkey, Saleh D.
    Amin, Mohammed A.
    Melhi, Saad
    Yang, Haokun
    Zhou, Huiling
    Zheng, Shunli
    ADVANCED COMPOSITES AND HYBRID MATERIALS, 2024, 7 (05)
  • [42] Microstructural characterization, mechanical property and corrosion behavior of VNbMoTaWAl refractory high entropy alloy coatings: Effect of Al content
    Bachani, Sameer Kamrudin
    Wang, Chaur-Jeng
    Lou, Bih-Show
    Chang, Li-Chun
    Lee, Jyh-Wei
    SURFACE & COATINGS TECHNOLOGY, 2020, 403
  • [43] Microstructure formation mechanism and corrosion behavior of FeCrCuTiV two-phase high entropy alloy prepared by different processes
    Xia, Shaoqiu
    Xia, Zhixin
    Zhao, Dong
    Xie, Yong
    Liu, Xin
    Wang, Liang
    FUSION ENGINEERING AND DESIGN, 2021, 172
  • [44] Effects of Mn on the electrochemical corrosion and passivation behavior of CoFeNiMnCr high-entropy alloy system in H2SO4 solution
    Yang, J.
    Wu, J.
    Zhang, C. Y.
    Zhang, S. D.
    Yang, B. J.
    Emori, W.
    Wang, J. Q.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 819
  • [45] The corrosion behavior and passive film analysis of CrFeCoNi high entropy alloy in nitric acid solutions at various temperatures
    Han, Feng
    Li, Chunyang
    Pai, Zula
    Wang, Jiacai
    Xia, Chaobo
    Li, Xiubo
    Xue, Long
    Wang, Caimei
    MATERIALS CHEMISTRY AND PHYSICS, 2025, 339
  • [46] Superior corrosion resistance of high-temperature Ir-Ni-Ta-(B) amorphous alloy in sulfuric acid solution
    Yang, Xiaodong
    Gao, Meng
    Liu, Yanhui
    Li, Jinlong
    Huang, Yan
    Wang, Gang
    Wang, Jun-Qiang
    Huo, Juntao
    CORROSION SCIENCE, 2022, 200
  • [47] Corrosion Behavior and Comprehensive Evaluation of Al0.8CrFeCoNiCu0.5B0.1 High-Entropy Alloy in 3.5% NaCl Solution
    Li, Yanzhou
    Shi, Yan
    Chen, Rongna
    Lin, Hua
    Ji, Xiaohu
    LUBRICANTS, 2023, 11 (07)
  • [48] Microstructure and corrosion behavior of AlCoCrFeNiSi0.1 high-entropy alloy
    Xiang, C.
    Zhang, Z. M.
    Fu, H. M.
    Han, E-H
    Zhang, H. F.
    Wang, J. Q.
    INTERMETALLICS, 2019, 114
  • [49] Microstructural evolution and corrosion behavior of directionally solidified FeCoNiCrAl high entropy alloy
    Cui Hongbao
    Wang Ying
    Wang Jinyong
    Guo Xuefeng
    Fu Hengzhi
    CHINA FOUNDRY, 2011, 8 (03) : 259 - 263
  • [50] Microstructure and Corrosion Behavior of Ti-Zr-Nb High Entropy Alloy
    Jia Y.
    Wang P.
    Zhang W.
    Wang Y.
    Dai X.
    Yuanzineng Kexue Jishu/Atomic Energy Science and Technology, 2021, 55 : 235 - 241