An empirical model for underdispersed count data

被引:78
作者
Ridout, MS [1 ]
Besbeas, P [1 ]
机构
[1] Univ Kent, Inst Math Stat & Actuarial Sci, Canterbury CT2 7NF, Kent, England
关键词
clutch size; exponential weighting; linnet; Poisson process; polyspermy; weighted Poisson distribution;
D O I
10.1191/1471082X04st064oa
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We present a novel distribution for modelling count data that are underdispersed relative to the Poisson distribution. The distribution is a form of weighted Poisson distribution and is shown to have advantages over other weighted Poisson distributions that have been proposed to model underdispersion. One key difference is that the weights in our distribution are centred on the mean of the underlying Poisson distribution. Several illustrative examples are presented that illustrate the consistently good performance of the distribution.
引用
收藏
页码:77 / 89
页数:13
相关论文
共 25 条
[1]  
[Anonymous], ANN I STAT MATH, DOI DOI 10.1023/A:1003585714207
[2]   Generalized Poisson models arising from Markov processes [J].
Bosch, RJ ;
Ryan, LM .
STATISTICS & PROBABILITY LETTERS, 1998, 39 (03) :205-212
[3]  
Cameron AC, 1997, J APPL ECONOM, V12, P203, DOI 10.1002/(SICI)1099-1255(199705)12:3<203::AID-JAE446>3.0.CO
[4]  
2-2
[5]  
Conway RW, 1962, J IND ENG, V12, P132, DOI DOI 10.1198/JCGS.2010.08080
[6]  
Cox DR., 1965, The Theory of Stochastic Proceesses
[7]  
DALEY DJ, 1989, IMA J MATH APPL MED, V6, P161
[9]   Likelihood-based modeling and analysis of data underdispersed relative to the Poisson distribution [J].
Faddy, MJ ;
Bosch, RJ .
BIOMETRICS, 2001, 57 (02) :620-624
[10]   Extended Poisson process modelling and analysis of count data [J].
Faddy, MJ .
BIOMETRICAL JOURNAL, 1997, 39 (04) :431-440