A stochastic variational approach to the viscous Camassa-Holm and Leray-alpha equations

被引:5
作者
Cruzeiro, Ana Bela [1 ,2 ]
Liu, Guoping [1 ,2 ,3 ]
机构
[1] Inst Super Tecn UL, GFMUL, Ave Rovisco Pais, P-1049001 Lisbon, Portugal
[2] Inst Super Tecn UL, Dept Matemat, Ave Rovisco Pais, P-1049001 Lisbon, Portugal
[3] Chinese Acad Sci, AMSS, Zhongguancun East Rd 55, Beijing 100190, Peoples R China
关键词
Stochastic variational principles; Camassa-Holm equation; Leray-alpha equations; SHALLOW-WATER EQUATION; DIFFEOMORPHISM GROUP; WELL-POSEDNESS; GEODESIC-FLOW; MODEL; DIFFUSIONS; TURBULENCE; EXISTENCE; MOTION; CIRCLE;
D O I
10.1016/j.spa.2016.05.006
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We derive the (d-dimensional) periodic incompressible and viscous Camassa-Holm equation as well as the Leray-alpha equations via stochastic variational principles. We discuss the existence of solution for these equations in the space H-1 using the probabilistic characterization. The underlying Lagrangian flows are diffusion processes living in the group of diffeomorphisms of the torus. We study in detail these diffusions. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 50 条
[41]   EMBEDDING CAMASSA-HOLM EQUATIONS IN INCOMPRESSIBLE EULER [J].
Natale, Andrea ;
Vialard, Francois-Xavier .
JOURNAL OF GEOMETRIC MECHANICS, 2019, 11 (02) :205-223
[42]   Numerical study of fractional Camassa-Holm equations [J].
Klein, Christian ;
Oruc, Goksu .
PHYSICA D-NONLINEAR PHENOMENA, 2024, 457
[43]   Nonlocal Symmetries of the Camassa-Holm Type Equations [J].
Lu ZHAO ;
Changzheng QU .
ChineseAnnalsofMathematics,SeriesB, 2020, (03) :407-418
[44]   Nonlocal Symmetries of the Camassa-Holm Type Equations [J].
Zhao, Lu ;
Qu, Changzheng .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2020, 41 (03) :407-418
[45]   Global conservative and dissipative solutions of a coupled Camassa-Holm equations [J].
Tian, Lixin ;
Wang, Yujuan ;
Zhou, Jiangbo .
JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (06)
[46]   On a Stochastic Camassa-Holm Type Equation with Higher Order Nonlinearities [J].
Rohde, Christian ;
Tang, Hao .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2021, 33 (04) :1823-1852
[47]   On a Camassa-Holm type equation describing the dynamics of viscous fluid conduits [J].
Granero-Belinchon, Rafael .
APPLIED MATHEMATICS LETTERS, 2025, 163
[48]   GLOBAL WELL-POSEDNESS OF THE STOCHASTIC CAMASSA-HOLM EQUATION [J].
Chen, Yong ;
Duan, Jinqiao ;
Gao, Hongjun .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2021, 19 (03) :607-627
[49]   On the blow-up structure for the generalized periodic Camassa-Holm and Degasperis-Procesi equations [J].
Fu, Ying ;
Liu, Yue ;
Qu, Changzheng .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (07) :3125-3158
[50]   TWO-COMPONENT HIGHER ORDER CAMASSA-HOLM SYSTEMS WITH FRACTIONAL INERTIA OPERATOR: A GEOMETRIC APPROACH [J].
Escher, Joachim ;
Lyons, Tony .
JOURNAL OF GEOMETRIC MECHANICS, 2015, 7 (03) :281-293