A stochastic variational approach to the viscous Camassa-Holm and Leray-alpha equations

被引:5
作者
Cruzeiro, Ana Bela [1 ,2 ]
Liu, Guoping [1 ,2 ,3 ]
机构
[1] Inst Super Tecn UL, GFMUL, Ave Rovisco Pais, P-1049001 Lisbon, Portugal
[2] Inst Super Tecn UL, Dept Matemat, Ave Rovisco Pais, P-1049001 Lisbon, Portugal
[3] Chinese Acad Sci, AMSS, Zhongguancun East Rd 55, Beijing 100190, Peoples R China
关键词
Stochastic variational principles; Camassa-Holm equation; Leray-alpha equations; SHALLOW-WATER EQUATION; DIFFEOMORPHISM GROUP; WELL-POSEDNESS; GEODESIC-FLOW; MODEL; DIFFUSIONS; TURBULENCE; EXISTENCE; MOTION; CIRCLE;
D O I
10.1016/j.spa.2016.05.006
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We derive the (d-dimensional) periodic incompressible and viscous Camassa-Holm equation as well as the Leray-alpha equations via stochastic variational principles. We discuss the existence of solution for these equations in the space H-1 using the probabilistic characterization. The underlying Lagrangian flows are diffusion processes living in the group of diffeomorphisms of the torus. We study in detail these diffusions. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 50 条
[21]   Global wellposedness of cubic Camassa-Holm equations [J].
Zhang, Qingtian .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 133 :61-73
[22]   On the N=2 supersymmetric Camassa-Holm and Hunter-Saxton equations [J].
Lenells, J. ;
Lechtenfeld, O. .
JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (01)
[23]   Ill-posedness for the Camassa-Holm and related equations in Besov spaces [J].
Li, Jinlu ;
Yu, Yanghai ;
Zhu, Weipeng .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 306 :403-417
[24]   The geometry of the two-component Camassa-Holm and Degasperis-Procesi equations [J].
Escher, J. ;
Kohlmann, M. ;
Lenells, J. .
JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (02) :436-452
[25]   An interacting system of the Camassa-Holm and Degasperis-Procesi equations [J].
Wang, Mingxin ;
Yu, Shengqi .
JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (06)
[26]   ON THE INITIAL VALUE PROBLEM FOR HIGHER DIMENSIONAL CAMASSA-HOLM EQUATIONS [J].
Yan, Kai ;
Yin, Zhaoyang .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (03) :1327-1358
[27]   Bang-bang optimal control problems for the viscous Camassa-Holm equations [J].
Anh, Cung The ;
Giang, Nguyen Hai Ha ;
Son, Vu Hai .
OPTIMIZATION, 2025,
[28]   The dependence on initial data of stochastic Camassa-Holm equation [J].
Lv, Guangying ;
Wei, Jinlong ;
Zou, Guang-an .
APPLIED MATHEMATICS LETTERS, 2020, 107
[29]   Well-posedness of modified Camassa-Holm equations [J].
McLachlan, Robert ;
Zhang, Xingyou .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (08) :3241-3259
[30]   An optimal control problem of the 3D viscous Camassa-Holm equations [J].
Cung The Anh ;
Dang Thanh Son .
OPTIMIZATION, 2021, 70 (01) :3-25