A stochastic variational approach to the viscous Camassa-Holm and Leray-alpha equations

被引:5
|
作者
Cruzeiro, Ana Bela [1 ,2 ]
Liu, Guoping [1 ,2 ,3 ]
机构
[1] Inst Super Tecn UL, GFMUL, Ave Rovisco Pais, P-1049001 Lisbon, Portugal
[2] Inst Super Tecn UL, Dept Matemat, Ave Rovisco Pais, P-1049001 Lisbon, Portugal
[3] Chinese Acad Sci, AMSS, Zhongguancun East Rd 55, Beijing 100190, Peoples R China
关键词
Stochastic variational principles; Camassa-Holm equation; Leray-alpha equations; SHALLOW-WATER EQUATION; DIFFEOMORPHISM GROUP; WELL-POSEDNESS; GEODESIC-FLOW; MODEL; DIFFUSIONS; TURBULENCE; EXISTENCE; MOTION; CIRCLE;
D O I
10.1016/j.spa.2016.05.006
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We derive the (d-dimensional) periodic incompressible and viscous Camassa-Holm equation as well as the Leray-alpha equations via stochastic variational principles. We discuss the existence of solution for these equations in the space H-1 using the probabilistic characterization. The underlying Lagrangian flows are diffusion processes living in the group of diffeomorphisms of the torus. We study in detail these diffusions. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 50 条
  • [1] Regularity Criteria for the Viscous Camassa-Holm Equations
    Zhou, Yong
    Fan, Jishan
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2009, 2009 (13) : 2508 - 2518
  • [2] ON THE VISCOUS CAMASSA-HOLM EQUATIONS WITH FRACTIONAL DIFFUSION
    Gan, Zaihui
    Lin, Fanghua
    Tong, Jiajun
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (06) : 3427 - 3450
  • [3] Gevrey class regularity for the viscous Camassa-Holm equations
    Yu, YJ
    Li, KT
    APPLIED MATHEMATICS LETTERS, 2005, 18 (06) : 713 - 719
  • [4] Decay characterization of solutions to the viscous Camassa-Holm equations
    Cung The Anh
    Pham Thi Trang
    NONLINEARITY, 2018, 31 (02) : 621 - 650
  • [5] DECAY ASYMPTOTICS OF THE VISCOUS CAMASSA-HOLM EQUATIONS IN THE PLANE
    Bjorland, Clayton
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 40 (02) : 516 - 539
  • [6] On questions of decay and existence for the viscous Camassa-Holm equations
    Bjorland, Clayton
    Schonbek, Maria E.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2008, 25 (05): : 907 - 936
  • [7] Random attractor for a stochastic viscous coupled Camassa-Holm equation
    Huang Z.
    Tang H.
    Liu Z.
    Journal of Inequalities and Applications, 2013 (1)
  • [8] Equations of the Camassa-Holm hierarchy
    R. I. Ivanov
    Theoretical and Mathematical Physics, 2009, 160 : 952 - 959
  • [9] Attractors for the viscous Camassa-Holm equation
    Stanislavova, Milena
    Stefanov, Atanas
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2007, 18 (01) : 159 - 186
  • [10] The Camassa-Holm equations and turbulence
    Chen, S
    Foias, C
    Holm, DD
    Olson, E
    Titi, ES
    Wynne, S
    PHYSICA D, 1999, 133 (1-4): : 49 - 65