Learning from the Harvard Clean Energy Project: The Use of Neural Networks to Accelerate Materials Discovery

被引:172
作者
Pyzer-Knapp, Edward O. [1 ]
Li, Kewei [1 ]
Aspuru-Guzik, Alan [1 ]
机构
[1] Dept Chem & Chem Biol, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
ORGANIC PHOTOVOLTAICS; AQUEOUS SOLUBILITY; QUANTUM-CHEMISTRY; PREDICTION; DESIGN; APPROXIMATION;
D O I
10.1002/adfm.201501919
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Here, the employment of multilayer perceptrons, a type of artificial neural network, is proposed as part of a computational funneling procedure for high-throughput organic materials design. Through the use of state of the art algorithms and a large amount of data extracted from the Harvard Clean Energy Project, it is demonstrated that these methods allow a great reduction in the fraction of the screening library that is actually calculated. Neural networks can reproduce the results of quantum-chemical calculations with a large level of accuracy. The proposed approach allows to carry out large-scale molecular screening projects with less computational time. This, in turn, allows for the exploration of increasingly large and diverse libraries.
引用
收藏
页码:6495 / 6502
页数:8
相关论文
共 51 条
[11]   High-throughput quantum chemistry and virtual screening for lithium ion battery electrolyte additives [J].
Halls, Mathew D. ;
Tasaki, Ken .
JOURNAL OF POWER SOURCES, 2010, 195 (05) :1472-1478
[12]  
Hinton G., LECT 6 5 RMSPROP
[13]   A metal-free organic-inorganic aqueous flow battery [J].
Huskinson, Brian ;
Marshak, Michael P. ;
Suh, Changwon ;
Er, Sueleyman ;
Gerhardt, Michael R. ;
Galvin, Cooper J. ;
Chen, Xudong ;
Aspuru-Guzik, Alan ;
Gordon, Roy G. ;
Aziz, Michael J. .
NATURE, 2014, 505 (7482) :195-+
[14]   General melting point prediction based on a diverse compound data set and artificial neural networks [J].
Karthikeyan, M ;
Glen, RC ;
Bender, A .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2005, 45 (03) :581-590
[15]   ReactionPredictor: Prediction of Complex Chemical Reactions at the Mechanistic Level Using Machine Learning [J].
Kayala, Matthew A. ;
Baldi, Pierre .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2012, 52 (10) :2526-2540
[16]   Large-scale virtual high-throughput screening for the identification of new battery electrolyte solvents: evaluation of electronic structure theory methods [J].
Korth, Martin .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (17) :7919-7926
[17]  
Landrum G., RDKit: Open-Source Cheminformatics Software
[18]  
Lawrence S, 2000, IEEE IJCNN, P114, DOI 10.1109/IJCNN.2000.857823
[19]   Virtual High Throughput Screening Confirmed Experimentally: Porous Coordination Polymer Hydration [J].
Low, John J. ;
Benin, Annabelle I. ;
Jakubczak, Paulina ;
Abrahamian, Jennifer F. ;
Faheem, Syed A. ;
Willis, Richard R. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (43) :15834-15842
[20]   Deep Architectures and Deep Learning in Chemoinformatics: The Prediction of Aqueous Solubility for Drug-Like Molecules [J].
Lusci, Alessandro ;
Pollastri, Gianluca ;
Baldi, Pierre .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2013, 53 (07) :1563-1575