Emission from dielectric cavities in terms of invariant sets of the chaotic ray dynamics

被引:34
作者
Altmann, Eduardo G. [1 ]
机构
[1] Northwestern Univ, NW Inst Complex Syst, Evanston, IL 60628 USA
关键词
laser cavity resonators; laser modes; microcavities; optical chaos; DIRECTIONAL EMISSION; BURSTS; DECAY;
D O I
10.1103/PhysRevA.79.013830
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The chaotic ray dynamics inside dielectric cavities is described by the properties of an invariant chaotic saddle. The localization of the far-field emission in specific directions, recently observed in different experiments and wave simulations, is found to be a consequence of the filamentary pattern of the saddle's unstable manifold. For cavities with mixed phase space, the chaotic saddle is divided in hyperbolic and nonhyperbolic components, related, respectively, to the intermediate exponential (t < t(c)) and the asymptotic power-law (t>t(c)) decay of the energy inside the cavity. The alignment of the manifolds of the two components of the saddle explains why even if the energy concentration inside the cavity dramatically changes from t < t(c) to t>t(c), the far-field emission changes only slightly. Simulations in the annular billiard confirm and illustrate the main results.
引用
收藏
页数:9
相关论文
共 45 条
[1]   Decay of classical chaotic systems: The case of the Bunimovich stadium [J].
Alt, H ;
Graf, HD ;
Harney, HL ;
Hofferbert, R ;
Rehfeld, H ;
Richter, A ;
Schardt, P .
PHYSICAL REVIEW E, 1996, 53 (03) :2217-2222
[2]   Prevalence of marginally unstable periodic orbits in chaotic billiards [J].
Altmann, E. G. ;
Friedrich, T. ;
Motter, A. E. ;
Kantz, H. ;
Richter, A. .
PHYSICAL REVIEW E, 2008, 77 (01)
[3]   Poincare recurrences from the perspective of transient chaos [J].
Altmann, Eduardo G. ;
Tel, Tamas .
PHYSICAL REVIEW LETTERS, 2008, 100 (17)
[4]   Poincare recurrences and transient chaos in systems with leaks [J].
Altmann, Eduardo G. ;
Tel, Tamas .
PHYSICAL REVIEW E, 2009, 79 (01)
[5]   Stickiness in Hamiltonian systems: From sharply divided to hierarchical phase space [J].
Altmann, EG ;
Motter, AE ;
Kantz, H .
PHYSICAL REVIEW E, 2006, 73 (02)
[6]   Quantum fractal eigenstates [J].
Casati, G ;
Maspero, G ;
Shepelyansky, DL .
PHYSICA D-NONLINEAR PHENOMENA, 1999, 131 (1-4) :311-316
[7]   Escape rates and conditionally invariant measures [J].
Demers, MF ;
Young, LS .
NONLINEARITY, 2006, 19 (02) :377-397
[8]  
Dorfman J. R., 1999, An Introduction to Chaos in Non-Equilibrium Statistical Mechanics
[9]  
Gaspard P., 1998, Chaos, Scattering and Statistical Mechanics
[10]   High-power directional emission from microlasers with chaotic resonators [J].
Gmachl, C ;
Capasso, F ;
Narimanov, EE ;
Nöckel, JU ;
Stone, AD ;
Faist, J ;
Sivco, DL ;
Cho, AY .
SCIENCE, 1998, 280 (5369) :1556-1564