Exploring the Limits of N-Type Ultra-Shallow Junction Formation

被引:50
|
作者
Polley, Craig M. [1 ]
Clarke, Warrick R. [1 ]
Miwa, Jill A. [1 ]
Scappucci, Giordano [1 ]
Wells, Justin W. [2 ]
Jaeger, David L. [3 ]
Bischof, Maia R. [3 ]
Reidy, Richard F. [3 ]
Gorman, Brian P. [4 ]
Simmons, Michelle [1 ]
机构
[1] Univ New S Wales, Sch Phys, Sydney, NSW 2052, Australia
[2] Norwegian Univ Sci & Technol, Dept Phys, N-7491 Trondheim, Norway
[3] Univ N Texas, Dept Mat Sci & Engn, Denton, TX 76209 USA
[4] Colorado Sch Mines, Interdisciplinary Mat Sci Program, Golden, CO 80401 USA
基金
澳大利亚研究理事会; 美国国家科学基金会;
关键词
four point probe; ultra-shallow junction; delta doping; TEMPERATURE; SEGREGATION; TECHNOLOGY; ACTIVATION; SILICON; SCALE;
D O I
10.1021/nn4016407
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Low resistivity, near-surface doping in silicon represents a formidable challenge for both the microelectronics industry and future quantum electronic devices. Here we employ an ultra-high vacuum strategy to create highly abrupt doping profiles in silicon, which we characterize in situ using a four point probe scanning tunnelling microscope. Using a small molecule gaseous dopant source (PH3) which densely packs on a reconstructed silicon surface, followed by encapsulation In epitaxial silicon, we form highly conductive dopant sheets with subnanometer control of the depth profiles. This approach allows us to test the limits of ultra-shallow junction formation, with room temperature resistivities of 780 Omega/square at an encapsulation depth of 4.3 nm, increasing to 23 k Omega/square at an encapsulation depth of only 0.5 nm. We show that this depth-dependent resistivity can be accounted for by a combination of dopant segregation and surface scattering.
引用
收藏
页码:5499 / 5505
页数:7
相关论文
共 50 条
  • [1] Ultra-shallow junction formation with antimony implantation
    Shibahara, K
    IEICE TRANSACTIONS ON ELECTRONICS, 2002, E85C (05): : 1091 - 1097
  • [2] Microwave annealing for ultra-shallow junction formation
    P. Kohli
    S. Ganguly
    T. Kirichenko
    H. -J. Li
    S. Banerjee
    E. Graetz
    M. Shevelev
    Journal of Electronic Materials, 2002, 31 : 214 - 219
  • [3] Microwave annealing for ultra-shallow junction formation
    Kohli, P
    Ganguly, S
    Kirichenko, T
    Li, HJ
    Banerjee, S
    Graetz, E
    Shevelev, M
    JOURNAL OF ELECTRONIC MATERIALS, 2002, 31 (03) : 214 - 219
  • [4] Microwave annealing for ultra-shallow junction formation
    Kohli, P.
    Ganguly, S.
    Kirichenko, T.
    Li, H.-J.
    Banerjee, S.
    Graetz, E.
    Shevelev, M.
    2002, Minerals, Metals and Materials Society (31)
  • [5] Vacancy engineering for ultra-shallow junction formation
    Gwilliam, R.
    Cowern, N. E. B.
    Colombeau, B.
    Sealy, B.
    Smith, A. J.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2007, 261 (1-2): : 600 - 603
  • [6] Optically Stimulated Diffusion in Ultra-Shallow Junction Formation
    Kondratenko, Y.
    Kwok, C. T. M.
    Vaidyanathan, R.
    Seebauer, E. G.
    ION IMPLANTATION TECHNOLOGY 2008, 2008, 1066 : 228 - 231
  • [7] Nonthermal illumination effects on ultra-shallow junction formation
    Vaidyanathan, Ramakrishnan
    Felch, Susan
    Graoui, Houda
    Foad, Majeed A.
    Kondratenko, Yevgeniy
    Seebauer, Edmund G.
    APPLIED PHYSICS LETTERS, 2011, 98 (19)
  • [8] Ultra-Shallow Junction Formation - Physics and Advanced Technology
    Colombeau, B.
    Yeong, S. H.
    Tan, D. X. M.
    Smith, A. J.
    Gwilliam, R. M.
    Ng, C. M.
    Mok, K. R. C.
    Benistant, F.
    Chat, L.
    ION IMPLANTATION TECHNOLOGY 2008, 2008, 1066 : 11 - +
  • [9] Ultra-shallow junction formation by point defect engineering
    Chu, WK
    Shao, L
    Liu, J
    Thompson, PE
    Wang, X
    Chen, H
    IIT2002: ION IMPLANTATION TECHNOLOGY, PROCEEDINGS, 2003, : 48 - 51
  • [10] Total ionization dose effects of N-type tunnel field effect transistor (TFET) with ultra-shallow pocket junction
    Xi, Kai
    Bi, Jinshun
    Chu, Jiamin
    Xu, Gaobo
    Li, Bo
    Wang, Haibin
    Liu, Ming
    Sandip, Majumdar
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2020, 126 (06):