The Daugavet equation for polynomials on C*-algebras

被引:4
作者
Santos, Elisa R. [1 ]
机构
[1] Univ Fed Uberlandia, Fac Matemat, BR-38408100 Uberlandia, MG, Brazil
基金
巴西圣保罗研究基金会;
关键词
Daugavet equation; Banach spaces; Polynomials; C*-algebras; JB*-triples; PROPERTY; OPERATORS; SPACES; TRIPLES;
D O I
10.1016/j.jmaa.2013.07.027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the Daugavet equation and the alternative Daugavet equation for polynomials on C*-algebras. We study separately the cases in which the C*-algebras are commutative and non-commutative. In these cases, we obtain necessary and sufficient conditions on such C*-algebras in order that certain polynomial classes satisfy the Daugavet equation and the alternative'Daugavet equation. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:598 / 606
页数:9
相关论文
共 15 条
[1]   On continuous Peirce decompositions, Schur multipliers and the perturbation of triple functional calculus [J].
Arazy, J ;
Kaup, W .
MATHEMATISCHE ANNALEN, 2001, 320 (03) :431-461
[2]   WEAK STAR-CONTINUITY OF JORDAN TRIPLE PRODUCTS AND ITS APPLICATIONS [J].
BARTON, T ;
TIMONEY, RM .
MATHEMATICA SCANDINAVICA, 1986, 59 (02) :177-191
[3]   The Daugavet equation for polynomials [J].
Choi, Yun Sung ;
Garcia, Domingo ;
Maestre, Manuel ;
Martin, Miguel .
STUDIA MATHEMATICA, 2007, 178 (01) :63-82
[4]  
Daugavet IK., 1963, Uspekhi Mat. Nauk, V18, P157
[5]  
DUNCAN J, 1970, J LONDON MATH SOC, V2, P481
[6]   POINTS OF DIFFUSION OF LINEAR OPERATORS AND ALMOST DIFFUSE OPERATORS IN SPACES OF CONTINUOUS FUNCTIONS [J].
FOIAS, C ;
SINGER, I .
MATHEMATISCHE ZEITSCHRIFT, 1965, 87 (03) :434-&
[7]   THE GELFAND-NAIMARK THEOREM FOR JB-STAR-TRIPLES [J].
FRIEDMAN, Y ;
RUSSO, B .
DUKE MATHEMATICAL JOURNAL, 1986, 53 (01) :139-148
[8]   DAUGAVET EQUATION AND OPERATORS ON L1(MU) [J].
HOLUB, JR .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 100 (02) :295-300
[9]   Banach spaces with the Daugavet property [J].
Kadets, VM ;
Shvidkoy, RV ;
Sirotkin, GG ;
Werner, D .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (02) :855-873
[10]   A PROPERTY OF COMPACT-OPERATORS [J].
KAMOWITZ, H .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 91 (02) :231-236