Towards reference dosimetry for the MR-linac: magnetic field correction of the ionization chamber reading

被引:102
作者
Smit, K. [1 ]
van Asselen, B. [1 ]
Kok, J. G. M. [1 ]
Aalbers, A. H. L. [1 ]
Lagendijk, J. J. W. [1 ]
Raaymakers, B. W. [1 ]
机构
[1] Univ Med Ctr Utrecht, Dept Radiotherapy, NL-3584 CX Utrecht, Netherlands
关键词
MV RADIOTHERAPY ACCELERATOR; SCANNER; PHOTON; IMPACT;
D O I
10.1088/0031-9155/58/17/5945
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In the UMC Utrecht a prototype MR-linac has been installed. The system consists of a 6 MV Elekta (Crawley, UK) linear accelerator and a 1.5 T Philips (Best, The Netherlands) Achieva MRI system. This paper investigates the feasibility to correct the ionization chamber reading for the magnetic field within the dosimetry calibration method described by Almond et al (1999 Med. Phys. 26 1847-70). Firstly, the feasibility of using an ionization chamber in an MR-linac was assessed by investigating possible influences of the magnetic field on NE2571 Farmer-type ionization chamber characteristics: linearity, repeatability, orientation in the magnetic field; and AAPM TG51 correction factor for voltage polarity and ion recombination. We found that these AAPM correction factors for the NE2571 chamber were not influenced by the magnetic field. Secondly, the influence of the permanent 1.5 T magnetic field on the NE2571 chamber reading was quantified. The reading is influenced by the magnetic field; therefore, a correction factor has been added. For the standardized setup used in this paper, the NE2571 chamber reading increases by 4.9% (+/- 0.2%) due to the transverse 1.5 T magnetic field. Dosimetry measurements in an MR-linac are feasible, if a setup-specific magnetic field correction factor (P-1.5T) for the charge reading is introduced. For the setup investigated in this paper, the P-1.5T has a value of 0.953.
引用
收藏
页码:5945 / 5957
页数:13
相关论文
共 15 条
[1]  
Aalbers A., 2008, CODE PRACTICE ABSORB
[2]   AAPM's TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams [J].
Almond, PR ;
Biggs, PJ ;
Coursey, BM ;
Hanson, WF ;
Huq, MS ;
Nath, R ;
Rogers, DWO .
MEDICAL PHYSICS, 1999, 26 (09) :1847-1870
[3]  
Andreo P, 2000, IAEA TECHNICAL REPOR
[4]  
Bedford R E, 1990, TECHNIQUES APPROXIMA
[5]  
Boag J W, 1966, RAD DOSIM, V2, P649
[7]   On the theory of recombination [J].
Jaffe, G .
PHYSICAL REVIEW, 1940, 58 (11) :968-976
[8]   MRI/linac integration [J].
Lagendijk, Jan J. W. ;
Raaymakers, Bas W. ;
Raaijmakers, Alexander J. E. ;
Overweg, Johan ;
Brown, Kevin J. ;
Kerkhof, Ellen M. ;
van der Put, Richard W. ;
Hardemark, Bjorn ;
van Vutpen, Marco ;
van der Heide, Uutke A. .
RADIOTHERAPY AND ONCOLOGY, 2008, 86 (01) :25-29
[9]   Dosimetry for the MRI accelerator: the impact of a magnetic field on the response of a Farmer NE2571 ionization chamber [J].
Meijsing, I. ;
Raaymakers, B. W. ;
Raaijmakers, A. J. E. ;
Kok, J. G. M. ;
Hogeweg, L. ;
Liu, B. ;
Lagendijk, J. J. W. .
PHYSICS IN MEDICINE AND BIOLOGY, 2009, 54 (10) :2993-3002
[10]   Integrating a MRI scanner with a 6 MV radiotherapy accelerator: impact of the surface orientation on the entrance and exit dose due to the transverse magnetic field [J].
Raaijmakers, A. J. E. ;
Raaymakers, B. W. ;
van der Meer, S. ;
Lagendijk, J. J. W. .
PHYSICS IN MEDICINE AND BIOLOGY, 2007, 52 (04) :929-939