Analytical stability bound for delayed second-order systems with repeating poles using Lambert function W

被引:35
作者
Chen, YQ [1 ]
Moore, KL [1 ]
机构
[1] Utah State Univ, Dept Elect & Comp Engn, Ctr Self Organizing & Intelligent Syst, UMC 4160,Coll Engn, Logan, UT 84322 USA
关键词
delay; stability bound; analytical solutions; Lambert function;
D O I
10.1016/S0005-1098(01)00264-3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
By using Lambert function, the analytical stability bound is obtained in this paper for delayed second-order systems with repeatable poles. An example is presented to illustrate the obtained analytical result. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:891 / 895
页数:5
相关论文
共 14 条
[1]  
[Anonymous], 1949, P ROYAL SOC EDINBURG
[2]  
[Anonymous], LEONHARDI EULERI OPE
[3]  
Asl FM, 2000, P AMER CONTR CONF, P2496, DOI 10.1109/ACC.2000.878632
[4]  
Bellman R., 1963, DIFFERENTIAL DIFFERE
[5]  
Corless R., 1993, MAPLE TECHNICAL NEWS, V9, P12
[6]   On the Lambert W function [J].
Corless, RM ;
Gonnet, GH ;
Hare, DEG ;
Jeffrey, DJ ;
Knuth, DE .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 1996, 5 (04) :329-359
[7]  
Corless Robert M., 1997, ISSAC 97 P 1997 INT, P197, DOI DOI 10.1145/258726.258783
[8]  
EULER L, 1777, L EULERI OPERA OMNIA, V15, P268
[9]  
Gorecki H., 1989, Analysis and synthesis of time delay systems
[10]  
Jeffrey D.J., 1996, Mathematical Scientist, V21, P1