ESTIMATES OF DENSITIES OF STATIONARY DISTRIBUTIONS AND TRANSITION PROBABILITIES OF DIFFUSION PROCESSES

被引:16
作者
Bogachev, V. I. [1 ]
Roeckner, M. [2 ,3 ]
Shaposhnikov, S. V. [1 ]
机构
[1] MSU, Dept Math & Mech, Lab Probabil Theory, Moscow 119992, Russia
[2] Univ Bielefeld, Fak Math, D-33501 Bielefeld, Germany
[3] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
基金
俄罗斯基础研究基金会;
关键词
Harnack inequality; transition probabilities; stationary distribution; lower bounds for solutions to parabolic equations;
D O I
10.1137/S0040585X97982967
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We obtain lower bounds for solutions to second order elliptic and parabolic equations on the whole space. Our method is based on the study of the dependence of a constant in Harnack's inequality on the coefficients of the equation. As an application we obtain lower bounds for densities of stationary distributions and transition probabilities of diffusion processes with unbounded drift coefficients.
引用
收藏
页码:209 / 236
页数:28
相关论文
共 23 条
[1]   LOCAL BEHAVIOR OF SOLUTIONS OF QUASILINEAR PARABOLIC EQUATIONS [J].
ARONSON, DG ;
SERRIN, J .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1967, 25 (02) :81-&
[2]  
Bogachev V, 2000, THEOR PROBAB APPL+, V45, P363, DOI 10.1137/S0040585X97978348
[3]   Global regularity and bounds for solutions of parabolic equations for probability measures [J].
Bogachev, V. I. ;
Rockner, M. ;
Shaposhnikov, S. V. .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 2006, 50 (04) :561-581
[4]   Uniqueness of solutions to weak parabolic equations for measures [J].
Bogachev, V. I. ;
Da Prato, G. ;
Roeckner, M. ;
Stannat, W. .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2007, 39 :631-640
[5]  
Bogachev VI, 2005, DOKL MATH, V72, P934
[6]   Existence of solutions to weak parabolic equations for measures [J].
Bogachev, VI ;
Da Prato, G ;
Röckner, M .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2004, 88 :753-774
[7]   Uniqueness of solutions of elliptic equations and uniqueness of invariant measures of diffusions [J].
Bogachev, VI ;
Röckner, M ;
Stannat, W .
SBORNIK MATHEMATICS, 2002, 193 (7-8) :945-976
[8]   Regularity of invariant measures: The case of non-constant diffusion part [J].
Bogachev, VI ;
Krylov, N ;
Rockner, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 138 (01) :223-242
[9]   REGULARITY OF INVARIANT-MEASURES ON FINITE AND INFINITE-DIMENSIONAL SPACES AND APPLICATIONS [J].
BOGACHEV, VI ;
ROCKNER, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 133 (01) :168-223
[10]   On regularity of transition probabilities and invariant measures of singular diffusions under minimal conditions [J].
Bogachev, VI ;
Krylov, NV ;
Röckner, M .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2001, 26 (11-12) :2037-2080