Manifold Learning for Latent Variable Inference in Dynamical Systems

被引:42
作者
Talmon, Ronen [1 ]
Mallat, Stephane [2 ]
Zaveri, Hitten [3 ]
Coifman, Ronald R. [4 ]
机构
[1] Technion Israel Inst Technol, Dept Elect Engn, IL-32000 Haifa, Israel
[2] Ecole Normale Super, Dept Comp Sci, F-75005 Paris, France
[3] Yale Univ, Dept Neurol, New Haven, CT 06520 USA
[4] Yale Univ, Dept Math, New Haven, CT 06520 USA
基金
欧洲研究理事会;
关键词
Intrinsic modeling; kernel methods; manifold learning; nonlinear observers; scattering transform; DIMENSIONALITY REDUCTION; EPILEPTIC SEIZURES; DIFFUSION; PREDICTION; EIGENMAPS;
D O I
10.1109/TSP.2015.2432731
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We study the inference of latent intrinsic variables of dynamical systems from output signal measurements. The primary focus is the construction of an intrinsic distance between signal measurements, which is independent of the measurement device. This distance enables us to infer the latent intrinsic variables through the solution of an eigenvector problem with a Laplace operator based on a kernel. The signal geometry and its dynamics are represented with nonlinear observers. An analysis of the properties of the observers that allow for accurate recovery of the latent variables is given, and a way to test whether these properties are satisfied from the measurements is proposed. Scattering and window Fourier transform observers are compared. Applications are shown on simulated data, and on real intracranial Electroencephalography (EEG) signals of epileptic patients recorded prior to seizures.
引用
收藏
页码:3843 / 3856
页数:14
相关论文
共 50 条
[1]  
Anandkumar A., 2012, ADV NEURAL INFORM PR, P926
[2]  
Anandkumar A., 2012, ARXIV12107559
[3]   Deep Scattering Spectrum [J].
Anden, Joakim ;
Mallat, Stephane .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (16) :4114-4128
[4]   Testing the null hypothesis of the nonexistence of a preseizure state [J].
Andrzejak, RG ;
Mormann, F ;
Kreuz, T ;
Rieke, C ;
Kraskov, A ;
Elger, CE ;
Lehnertz, K .
PHYSICAL REVIEW E, 2003, 67 (01) :4
[5]  
[Anonymous], 1936, P NATL I SCI INDIA, DOI DOI 10.1007/S13171-019-00164-5
[6]  
[Anonymous], 1997, C BOARD MATH SCI
[7]  
[Anonymous], P IEEE WORKSH APPL S
[8]  
Archambeau C., 2007, P NIPS
[9]  
Arnold L, 1998, Random dynamical systems
[10]   Model-Based Compressive Sensing [J].
Baraniuk, Richard G. ;
Cevher, Volkan ;
Duarte, Marco F. ;
Hegde, Chinmay .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (04) :1982-2001