Plasmons in graphene nanostructures

被引:29
作者
Yin, Haifeng [1 ,2 ]
Zhang, Hong [1 ]
机构
[1] Sichuan Univ, Coll Phys Sci & Technol, Chengdu 610065, Peoples R China
[2] Kaili Univ, Coll Sci, Kaili 556011, Guizhou, Peoples R China
关键词
SPECTRA; TIME;
D O I
10.1063/1.4706566
中图分类号
O59 [应用物理学];
学科分类号
摘要
The collectivity of the electronic motion in graphene nanostructures is studied by time-dependent density functional theory (TDDFT). Compared with the plasmon in the homogeneous graphene, the plasmon in the graphene nanostructure has some different properties due to the effect of the size and the all dimensional confinement. In lower-energy resonance zone, spectral band is greatly broadening, even extending to the near-infrared spectral area, and the photoabsorption strength line splits. The absorption spectrum also depends on the edge configuration of the graphene nanostructure. The armchair-edge and the zigzag-edge play different roles in the absorption spectrum. Moreover, our results also demonstrate that most low-energy resonances are localized in the boundary region. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4706566]
引用
收藏
页数:6
相关论文
共 50 条
[41]   Vibron and phonon hybridization in dielectric nanostructures [J].
Preston, Thomas C. ;
Signorell, Ruth .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (14) :5532-5536
[42]   One-Dimensional ZnO Nanostructures [J].
Jayadevan, K. P. ;
Tseng, T. Y. .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2012, 12 (06) :4409-4457
[43]   Strong coupling and induced transparency at room temperature with single quantum dots and gap plasmons [J].
Leng, Haixu ;
Szychowski, Brian ;
Daniel, Marie-Christine ;
Pelton, Matthew .
NATURE COMMUNICATIONS, 2018, 9
[44]   Quantitative analysis of charge transfer plasmons in silver nanocluster dimers using semiempirical methods [J].
Sun, Qiwei ;
Ceylan, Yavuz S. ;
Gieseking, Rebecca L. M. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, 26 (28) :19138-19160
[45]   Plasmonic Properties of Metallic Nanoshells in the Quantum Limit: From Single Particle Excitations to Plasmons [J].
Perera, Tharaka ;
Gunapala, Sarath D. ;
Stockman, Mark, I ;
Premaratne, Malin .
JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (50) :27694-27708
[46]   Photoluminescence via gap plasmons between single silver nanowires and a thin gold film [J].
Hu, Hailong ;
Akimov, Yuriy A. ;
Duan, Huigao ;
Li, Xianglin ;
Liao, Mingyi ;
Tan, Rachel Lee Siew ;
Wu, Lin ;
Chen, Hongyu ;
Fan, Hongjin ;
Bai, Ping ;
Lee, Pooi See ;
Yang, Joel K. W. ;
Shen, Ze Xiang .
NANOSCALE, 2013, 5 (24) :12086-12091
[47]   A new time dependent density functional algorithm for large systems and plasmons in metal clusters [J].
Baseggio, Oscar ;
Fronzoni, Giovanna ;
Stener, Mauro .
JOURNAL OF CHEMICAL PHYSICS, 2015, 143 (02)
[48]   Strong Spatial and Spectral Localization of Surface Plasmons in Individual Randomly Disordered Gold Nanosponges [J].
Zhong, Jinhui ;
Chimeh, Abbas ;
Korte, Anke ;
Schwarz, Felix ;
Yi, Juemin ;
Wang, Dong ;
Zhan, Jinxin ;
Schaaf, Peter ;
Runge, Erich ;
Lienau, Christoph .
NANO LETTERS, 2018, 18 (08) :4957-4964
[49]   Graphene and Flavin Mononucleotide Interaction in Aqueous Graphene Dispersions [J].
Zhao, Wei ;
Sugunan, Abhilash ;
Zhang, Zhi-Bin ;
Ahniyaz, Anwar .
JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (43) :26282-26288
[50]   Effects of localized surface plasmons on the photoluminescence properties of Au-coated ZnO films [J].
Li, Xuehong ;
Zhang, Yang ;
Ren, Xijun .
OPTICS EXPRESS, 2009, 17 (11) :8735-8740