Plasmons in graphene nanostructures

被引:29
作者
Yin, Haifeng [1 ,2 ]
Zhang, Hong [1 ]
机构
[1] Sichuan Univ, Coll Phys Sci & Technol, Chengdu 610065, Peoples R China
[2] Kaili Univ, Coll Sci, Kaili 556011, Guizhou, Peoples R China
关键词
SPECTRA; TIME;
D O I
10.1063/1.4706566
中图分类号
O59 [应用物理学];
学科分类号
摘要
The collectivity of the electronic motion in graphene nanostructures is studied by time-dependent density functional theory (TDDFT). Compared with the plasmon in the homogeneous graphene, the plasmon in the graphene nanostructure has some different properties due to the effect of the size and the all dimensional confinement. In lower-energy resonance zone, spectral band is greatly broadening, even extending to the near-infrared spectral area, and the photoabsorption strength line splits. The absorption spectrum also depends on the edge configuration of the graphene nanostructure. The armchair-edge and the zigzag-edge play different roles in the absorption spectrum. Moreover, our results also demonstrate that most low-energy resonances are localized in the boundary region. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4706566]
引用
收藏
页数:6
相关论文
共 50 条
[31]   Insulating oxide surfaces and nanostructures [J].
Goniakowski, Jacek ;
Noguera, Claudine .
COMPTES RENDUS PHYSIQUE, 2016, 17 (3-4) :471-480
[32]   Efficient and Unidirectional Launching of Surface Plasmons from a Hyperbolic Meta-Antenna [J].
Zhang, Yiyun ;
Lepage, Dominic ;
Gao, Bingtao ;
Wang, Pan ;
Pan, Chenxinyu ;
Niu, Junru ;
Chen, Hongsheng ;
Qian, Haoliang .
LASER & PHOTONICS REVIEWS, 2023, 17 (09)
[33]   Localized Surface Plasmons on Textiles for Non-Contact Vital Sign Sensing [J].
Yang, Xin ;
Tian, Xi ;
Zeng, Qihang ;
Li, Zhipeng ;
Nguyen, Dat T. ;
Ho, John S. .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2022, 70 (09) :8507-8517
[34]   Diagnostic of Surface Plasmons Resonances in Nanosized Gold Films by Modulation Polarization Spectroscopy [J].
Rudenko, S. P. ;
Maksimenko, L. S. ;
Matyash, I. E. ;
Mischuk, O. M. ;
Stetsenko, M. O. ;
Serdega, B. K. .
PLASMONICS, 2016, 11 (02) :557-563
[35]   High-Visibility On-Chip Quantum Interference of Single Surface Plasmons [J].
Cai, Yong-Jing ;
Li, Ming ;
Ren, Xi-Feng ;
Zou, Chang-Ling ;
Xiong, Xiao ;
Lei, Hua-Lin ;
Liu, Bi-Heng ;
Guo, Guo-Ping ;
Guo, Guang-Can .
PHYSICAL REVIEW APPLIED, 2014, 2 (01)
[36]   A Partially Implicit FDTD Method for the Wideband Analysis of Spoof Localized Surface Plasmons [J].
Fujita, Kazuhiro .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2015, 27 (10) :1124-1127
[37]   Coherent Control of Gap Plasmons of a Complex Nanosystem by Shaping Driving Femtosecond Pulses [J].
Koya, Alemayehu Nana ;
Ji, Boyu ;
Hao, Zuoqiang ;
Lin, Jingquan .
PLASMONICS, 2017, 12 (06) :1693-1699
[38]   Chiral Plasmonic Nanostructures on Achiral Nanopillars [J].
Yeom, Bongjun ;
Zhang, Huanan ;
Zhang, Hui ;
Park, Jai Il ;
Kim, Kyoungwon ;
Govorov, Alexander O. ;
Kotov, Nicholas A. .
NANO LETTERS, 2013, 13 (11) :5277-5283
[39]   Plasmonic Nanostructures for Bioanalytical Applications of SERS [J].
Kahraman, Mehmet ;
Wachsmann-Hogiu, Sebastian .
PLASMONICS IN BIOLOGY AND MEDICINE XIII, 2016, 9724
[40]   Optical properties of several ternary nanostructures [J].
Tang, Xiao-Long ;
Cheng, Xin-Lu ;
Cao, Hua-Liang ;
Zeng, Hua-Dong .
CHINESE PHYSICS B, 2021, 30 (01)