Plasmons in graphene nanostructures

被引:29
作者
Yin, Haifeng [1 ,2 ]
Zhang, Hong [1 ]
机构
[1] Sichuan Univ, Coll Phys Sci & Technol, Chengdu 610065, Peoples R China
[2] Kaili Univ, Coll Sci, Kaili 556011, Guizhou, Peoples R China
关键词
SPECTRA; TIME;
D O I
10.1063/1.4706566
中图分类号
O59 [应用物理学];
学科分类号
摘要
The collectivity of the electronic motion in graphene nanostructures is studied by time-dependent density functional theory (TDDFT). Compared with the plasmon in the homogeneous graphene, the plasmon in the graphene nanostructure has some different properties due to the effect of the size and the all dimensional confinement. In lower-energy resonance zone, spectral band is greatly broadening, even extending to the near-infrared spectral area, and the photoabsorption strength line splits. The absorption spectrum also depends on the edge configuration of the graphene nanostructure. The armchair-edge and the zigzag-edge play different roles in the absorption spectrum. Moreover, our results also demonstrate that most low-energy resonances are localized in the boundary region. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4706566]
引用
收藏
页数:6
相关论文
共 50 条
[21]   Density-functional studies of plasmons in small metal clusters [J].
Lian, Ke-Yan ;
Salek, Pawel ;
Jin, Mingxing ;
Ding, Dajun .
JOURNAL OF CHEMICAL PHYSICS, 2009, 130 (17)
[22]   Room-temperature synthesis of various allotropes of carbon nanostructures (graphene, graphene polyhedra, carbon nanotubes and nano-onions, n-diamond nanocrystals) with aid of ultrasonic shock using ethanol and potassium hydroxide [J].
Dai, Dejian ;
Li, Yuanyuan ;
Fan, Jiyang .
CARBON, 2021, 179 :133-141
[23]   Charge-Tunable Quantum Plasmons in Colloidal Semiconductor Nanocrystals [J].
Schimpf, Alina M. ;
Thakkar, Niket ;
Gunthardt, Carolyn E. ;
Masiello, David J. ;
Gamelin, Daniel R. .
ACS NANO, 2014, 8 (01) :1065-1072
[24]   Optically induced anisotropy of surface plasmons in spherical metal nanoparticles [J].
Dmitruk, Igor ;
Blonskiy, Ivan ;
Pavlov, Ihor ;
Yeshchenko, Oleg ;
Alexeenko, Alexandr ;
Dmytruk, Andriy ;
Korenyuk, Petro ;
Kadan, Viktor ;
Zubrilin, Nikolai .
PHYSICAL REVIEW B, 2010, 82 (03)
[25]   Plasmons in Liquid Metals Studied by Inelastic X-ray Scattering [J].
Kimura, Koji ;
Hagiya, Toru ;
Matsuda, Kazuhiro ;
Hiraoka, Nozomu .
ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS, 2021, 235 (1-2) :81-98
[26]   1 nm resolution imaging of localized plasmons via field rectification [J].
Firby, C. J. ;
Elezzabi, A. Y. .
APPLIED PHYSICS LETTERS, 2013, 103 (21)
[27]   Use of surface plasmons for manipulation of organic molecule quasiparticles and optical properties [J].
Despoja, V. ;
Marusic, L. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2014, 26 (48)
[28]   One-Dimensional Plasmons and Hybridized Coupled Polaritons in Carbon Nanotubes [J].
Kestyn, James ;
Yngvesson, Sigfrid K. ;
Polizzi, Eric .
JOURNAL OF PHYSICAL CHEMISTRY C, 2025, 129 (04) :2062-2073
[29]   Ultrafast magnetization dynamics of nanostructures [J].
Bigot, Jean-Yves ;
Vomir, Mircea .
ANNALEN DER PHYSIK, 2013, 525 (1-2) :2-30
[30]   Plasmonic Nanostructures for Biophotonic Applications [J].
Cialla, D. ;
Strelau, K. K. ;
Schueler, T. ;
Moeller, R. ;
Huebner, U. ;
Schneidewind, H. ;
Zeisberger, M. ;
Mattheis, R. ;
Fritzsche, W. ;
Popp, J. .
PLASMONICS IN BIOLOGY AND MEDICINE VII, 2010, 7577