ON SUMS OF BINOMIAL COEFFICIENTS MODULO p2

被引:11
作者
Sun, Zhi-Wei [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
central binomial coefficients; congruences modulo prime powers; CONGRUENCES; NUMBERS;
D O I
10.4064/cm127-1-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p be an odd prime and let a be a positive integer. In this paper we investigate the sum Sigma(pa-1)(k=0) ((hpa-1)(k)) ((2k)(k))/m(k) mod p(2), where h and m are p-adic integers with m not equivalent to 0 (mod p). For example, we show that if h not equivalent to 0 (mod p) and p(a) > 3, then Sigma(pa-1)(k=0) ((hpa - 1)(k)) ((2k)(k)) (-h/2)(k) equivalent to (1 - 2h/p(a)) (1 + h((4 - 2/h)(p-1) -1)) (mod p(2)), where (divided by) denotes the Jacobi symbol. Here is another remarkable congruence: If p(a) > 3 then Sigma(pa-1)(k=0) ((pa-1)(k)) ((k)(2k)) (-1)(k) equivalent to 3(p-1) (p(a)/3) (mod p(2)).
引用
收藏
页码:39 / 54
页数:16
相关论文
共 20 条
[1]  
[Anonymous], 1862, Quart. J. Pure Appl. Math
[2]  
[Anonymous], 1998, Gauss and Jacobi Sums
[3]  
[Anonymous], 1999, ENUMERATIVE COMBINAT
[4]  
[Anonymous], 1989, A Wiley-Interscience Publication
[5]  
[Anonymous], 1994, FDN COMPUTER SCI
[6]   A THEOREM OF GLAISHER [J].
CARLITZ, L .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1953, 5 (03) :306-316
[7]  
Morley F., 1895, Ann. Math, V9, P168, DOI DOI 10.2307/1967516
[8]  
Pan H, 2009, International Journal of Modern Mathematics, V4, P87
[9]   A combinatorial identity with application to Catalan numbers [J].
Pan, Hao ;
Sun, Zhi-Wei .
DISCRETE MATHEMATICS, 2006, 306 (16) :1921-1940
[10]   FIBONACCI NUMBERS AND FERMAT LAST THEOREM [J].
SUN, ZH ;
SUN, ZW .
ACTA ARITHMETICA, 1992, 60 (04) :371-388