Global existence of solutions for semilinear damped wave equation in 2-D exterior domain

被引:18
作者
Ikehata, R [1 ]
机构
[1] Hiroshima Univ, Grad Sch Educ, Dept Math, Higashihiroshima 7398524, Japan
关键词
semilinear wave equation; dissipation; mixed problem; 2-D exterior domain; radial symmetry; global solution;
D O I
10.1016/j.jde.2003.08.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a mixed problem of a damped wave equation u(u) - Deltau + u(t), = \u\(p) in the two dimensional exterior domain case. Small global in time solutions can be coonstructed in the case when the power p on the nonlinear term \u\(p) satisfies p* = 2 < p < +infinity. For this purpose we shall deal with a radially symmetric solution in the exterior domain. A new device developed in Ikehata-Matsuyama (Sci. Math. Japon. 55 (2002) 33) plays all effective role. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:53 / 68
页数:16
相关论文
共 20 条
[1]  
Fujita H., 1966, J FAC SCI U TOKYO IA, V16, P105
[3]  
Ikawa M., 2000, HYPERBOLIC PARTIAL D, V189
[4]   Critical exponents for semilinear dissipative wave equations in RN [J].
Ikehata, R ;
Ohta, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 269 (01) :87-97
[5]  
IKEHATA R, IN PRESS J MATH SOC, V56
[6]  
Ikehata R., 2003, DIFFERENTIAL INTEGRA, V16, P727, DOI [DOI 10.57262/DIE/1356060609, 10.57262/die/1356060609]
[7]  
Ikehata R., 2001, Funk. Ekvac, V44, P487
[8]  
Ikehata R., 2002, Sci. Math. Jpn, V55, P33
[9]  
IKEHATA R, IN PRESS MATH METHOD, V27
[10]  
Ikehata R., 2002, FUNKC EKVACIOJ-SER I, V44, P259