Uniqueness of representation-theoretic hyperbolic Kac-Moody groups over Z

被引:0
作者
Carbone, Lisa
Wagner, Frank
机构
来源
LIE ALGEBRAS, VERTEX OPERATOR ALGEBRAS, AND RELATED TOPICS | 2017年 / 695卷
关键词
FINITE-FIELDS; LATTICES; RINGS;
D O I
10.1090/conm/695/13995
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a simply laced and hyperbolic Kac-Moody group G = G(R) over a commutative ring R with 1, we consider a map from a finite presentation of G(R) obtained by Allcock and Carbone to a representation-theoretic construction G(lambda)(R) corresponding to an integrable representation V-lambda with dominant integral weight lambda. When R = Z, we prove that this map extends to a group homomorphism rho(lambda),(Z) : G(Z) -> G(lambda)(Z). We prove that the kernel K-lambda of rho(lambda), (Z) lies in H(C) and if the natural group homomorphism phi : G(Z) -> G(C) is injective, then K-lambda <= H(Z) congruent to (Z/2Z)(rank)(G).
引用
收藏
页码:51 / 64
页数:14
相关论文
共 16 条
[1]   Steinberg groups as amalgams [J].
Allcock, Daniel .
ALGEBRA & NUMBER THEORY, 2016, 10 (08) :1791-1843
[2]   Presentation of hyperbolic Kac-Moody groups over rings [J].
Allcock, Daniel ;
Carbone, Lisa .
JOURNAL OF ALGEBRA, 2016, 445 :232-243
[3]  
Baumgartner U., COMMUNICATION
[4]   Existence of lattices in Kac-Moody groups over finite fields [J].
Carbone, L ;
Garland, H .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2003, 5 (05) :813-867
[5]  
Carbone L, 2016, PREPRINT
[6]   Abstract simplicity of complete Kac-Moody groups over finite fields [J].
Carbone, Lisa ;
Ershov, Mikhail ;
Ritter, Gordon .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2008, 212 (10) :2147-2162
[7]  
Cartier Pierre, 1955, SEMINAIRE SOPHUS L E, V2e
[8]  
Garland H., 1980, Inst. Hautes Etudes Sci. Publ. Math., P5, DOI 10.1007/BF02684779
[9]  
HUMPHREYS JE, 1977, CONTRIBUTIONS ALGEBR, P203
[10]  
Kac V. G., 1990, Infinite-dimensional Lie algebras, V3rd, DOI 10.1017/CBO9780511626234